Nauki Techniczne

Archives of Foundry Engineering

Zawartość

Archives of Foundry Engineering | 2020 | vol. 20 | No 3

Abstrakt

The results of the Charpy impact test of AE-type magnesium alloys produced by the high pressure die casting method are presented. Three alloys with different weight fractions of rare earth elements (RE; e.g. 1, 3 and 5 wt%) and the same mass fraction of aluminium (5 wt%) were prepared. The casts were fabricated using a typical cold chamber high pressure die casting machine with a 3.8 MN locking force. Microstructural analyses were performed by means of a scanning electron microscope (SEM). The impact strength (IS) was determined using a Charpy V hammer with an impact energy equal to 150 J. The microstructure of the experimental alloys consisted of an -Mg solid solution and Al11RE3, Al10Ce2Mn7 and Al2RE intermetallic compounds. The obtained results show the significant influence of the rare earth elements to aluminium ratio on the impact strength of the investigated materials. Lower the RE/Al ratio in the chemical composition of the alloy results in a higher impact strength of the material.

Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Braszczyńska-Malik
ORCID: ORCID
M.A. Malik

Abstrakt

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Przejdź do artykułu

Autorzy i Afiliacje

A. Dziadoń
ORCID: ORCID
E. Musiał

Abstrakt

The paper presents the effect of tin on the crystallization process, microstructure and hardness of cast iron with compacted (vermicular) graphite. The compacted graphite was obtained with the use of magnesium treatment process (Inmold technology). The lack of significant effect of tin on the temperature of the eutectic transformation has been demonstrated. On the other hand, a significant decrease in the eutectoid transformation temperature with increasing tin concentration has been shown. It was demonstrated that tin narrows the temperature range of the austenite transformation. The effect of tin on the microstructure of cast iron with compacted graphite considering casting wall thickness has been investigated and described. The carbide-forming effect of tin in thin-walled (3 mm) castings has been demonstrated. The nomograms describing the microstructure of compacted graphite iron versus tin concentration have been developed. The effect of tin on the hardness of cast iron was given.

Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Gumienny
ORCID: ORCID
B. Kurowska
ORCID: ORCID
P. Fabian

Abstrakt

The paper presents research of metallic glass based on a Mg72Zn24Ca4 alloy. Metallic glass was prepared using induction melting and further injection on a spinning copper wheel. The X-ray diffractometer and differential scanning calorimeter (DSC) were used to investigate the phase transformation of the amorphous ribbon. The heat released in the crystallization process, during isothermal annealing, based on the differential scanning calorimeter investigation, was determined to be 166.18 Jg-1. The effect of isothermal annealing temperature on the kinetics of the amorphous alloy crystallization process using differential scanning calorimeter was investigated. For this purpose, two isothermal annealing temperatures were selected. The incubation time decreases as the temperature of the isothermal annealing increases from 300 to 252 seconds. The same relationship is visible in the case of duration of the phase transformation, which also decreases as the temperature of the isothermal annealing increases from 360 to 228 seconds. The obtained results show a significant influence of isothermal annealing temperature on the degree of phase transformation.

Przejdź do artykułu

Autorzy i Afiliacje

J. Lelito

Abstrakt

The paper presents the results of research on the production and application of sintered copper matrix composite reinforced with titaniumcopper intermetallic phases. Cu- Ti composites were fabricated by powder metallurgy. The starting materials for obtaining the sintered composites were commercial powders of copper and titanium. Experiments were carried out on specimens containing 2.5, 5, 7.5 and 10 % of titanium by weight. Finished powders mixtures containing appropriate quantities of titanium were subjected to single pressing with a hydraulic press at a compaction pressure of 620 MPa. Obtained samples were subjected to sintering process at 880 °C in an atmosphere of dissociated ammonia. The sintering time was 6 hours. The introduction of titanium into copper resulted in the formation of many particles containing intermetallic phases. The obtained sinters were subjected to hardness, density and electrical conductivity measurements. Observations of the microstructure on metallographic specimens made from the sintered compacts were also performed using a optical microscope. An analysis of the chemical composition (EDS) of the obtained composites was also performed using a scanning electron microscope. Microstructural investigations by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that after 6 hours of sintering at 880°C intermetallic compounds: TiCu, TiCu2, TiCu4, Ti2Cu3, Ti3Cu4 were formed. The hardness increased in comparison with a sample made of pure copper whereas density and electrical conductivity decreased. The aim of this work was to fabricate copper matrix composites reinforced with titanium particles containing copper- titanium intermetallic phases using powder metallurgy technology and determine the influence of the titanium particles on the properties of the sintered compacts and, finally, analyse the potentials application for friction materials or electric motors brushes.

Przejdź do artykułu

Autorzy i Afiliacje

M. Kargul
ORCID: ORCID
M. Konieczny

Abstrakt

The present work studies the tribological properties of new hybrid material composed from high porosity open cell aluminum alloy (AlSi10Mg) skeleton and B83 babbitt infiltrated into it. The porous skeleton is obtained by replication method applying salt (NaCl) as space holder. The reinforcing phase of the skeleton consists of Al2O3 particles. The skeleton contains Al2O3 particles as reinforcement. The microstructure of the obtained materials is observed and the tribological properties are determined. A comparison between tribological properties of nominally nonporous aluminum alloy, high porosity open cell skeleton, babbitt alloy and the hybrid material is presented. It is concluded that new hybrid material has high wear resistivity and is a promising material for sliding bearings and other machine elements with high wear resistivity.

Przejdź do artykułu

Autorzy i Afiliacje

M. Kolev
L. Drenchev
L. Stanev

Abstrakt

The study presented in this paper concerned the possibility to apply a heat treatment process to ductile cast-iron thin-walled castings in order to remove excessive quantities of pearlite and eutectic cementite precipitates and thus meet the customer’s requirements. After determining the rates of heating a casting up to and cooling down from 900°C feasible in the used production heat treatment furnace (vh = 300°C/h and vc = 200°C/h, respectively), dilatometric tests were carried out to evaluate temperatures Tgr, TAc1start, TAc1end, TAr1start, and TAr1end. The newly acquired knowledge was the base on which conditions for a single-step ferritizing heat treatment securing disintegration of pearlite were developed as well as those of a two-step ferritization process guaranteeing complete disintegration of cementite and arriving at the required ferrite and pearlite content. A purely ferritic matrix and hardness of 119 HB was secured by the treatment scheme: 920°C for 2 hours / vc = 60°C/h / 720°C for 4 hours. A matrix containing 20–45% of pearlite and hardness of 180–182 HB was obtained by applying: 920°C for 2 hours or 4 hours / vc = 200°C/h to 650°C / ambient air.

Przejdź do artykułu

Autorzy i Afiliacje

Marek Mróz
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
M. Tupaj
ORCID: ORCID
B. Kupiec
M. Kawiński

Abstrakt

This paper presents a new stand for studying the linear shrinkage kinetics of foundry alloys. The stand is equipped with a laser displacement sensor. Thanks to this arrangement, the measurement is of a contactless nature. This solution allows for the elimination of errors which occur in measurements made using intermediary elements (steel rods). The supposition of the expansion (shrinkage) of the sample and the expansion of the heated rod lead to the distortion of the image of the actual dimensional changes of the studied sample. A series of studies of foundry alloys conducted using the new stand allowed a new image of shrinkage kinetics to be obtained, in particular regarding cast iron. The authors introduce in the study methodology a real-time measurement of two linked quantities; shrinkage (the displacement of the free end of the sample) and temperature in the surface layer of the sample casting. This generates not only a classic image of shrinkage (S) understood as S = f (t), but also the view S = f (T). The latter correlation, developed based on results obtained using the contactless method, provide a new, so far poorly known image of the course of shrinkage in foundry alloys, especially cast iron with graphite in the structure. The study made use of hypo- and hypereutectic cast iron in order to generate an image of the differences which occur in the kinetics of shrinkage (as well as in pre-shrinkage expansion - expansion occurs during solidification).

Przejdź do artykułu

Autorzy i Afiliacje

J. Zych
ORCID: ORCID
T. Snopkiewicz

Abstrakt

This article proposes these of vibratory machining to Ti-6Al-4V titanium alloy as finishing treatment. Titanium alloy was used in the aerospace industry, military, metallurgical, automotive and medical processes, extreme sports and other. The three-level three-factor Box-Behnken experiment examined the influence of machining time of vibratory machining, the type of mass finishing media used and the initial state of the surface layer on the mass loss, geometric structure of the surface, micro hardness and the optimal process parameters were determined. Considerations were given the surfaces after milling, after cutting with a band saw and after the sanding process. The experiment used three types of mass finishing media: polyester, porcelain and metal. Duration of vibratory machining treatment was assumed to be 20, 40, 60 minutes. The form profiles before and after vibratory machining were determined with the Talysurf CCI Lite - Taylor Hobson optical profiler. Future tests should concern research to carry out tests using abrasive pastes with a larger granulation of abrasive grains, to carry out tests for longer processing times and to determine the time after which the parameters of geometrical structure of the surface change is unnoticeable.

Przejdź do artykułu

Autorzy i Afiliacje

D. Bańkowski
ORCID: ORCID
S. Spadło
ORCID: ORCID

Abstrakt

Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.

Przejdź do artykułu

Autorzy i Afiliacje

H. Danielewski
B. Antoszewski

Abstrakt

This article presents a sequential model of the heating-remelting-cooling of steel samples based on the finite element method (FEM) and the smoothed particle hydrodynamics (SPH). The numerical implementation of the developed solution was completed as part of the original DEFFEM 3D package, being developed for over ten years, and is a dedicated tool to aid physical simulations performed with modern Gleeble thermo-mechanical simulators. Using the developed DEFFEM 3D software to aid physical simulations allows the number of costly tests to be minimized, and additional process information to be obtained, e.g. achieved local cooling rates at any point in the sample tested volume, or characteristics of temperature changes. The study was complemented by examples of simulation and experimental test results, indicating that the adopted model assumptions were correct. The developed solution is the basis for the development of DEFFEM 3D software aimed at developing a comprehensive numerical model allows the simulation of deformation of steel in semi solid state.

Przejdź do artykułu

Autorzy i Afiliacje

Marcin Hojny

Abstrakt

The fluidity is the term to determine the materials ability to fill the mold cavity properly. Fluidity is complex property with many variables. Up to this date, there is no methodology for defining the fluidity in a semisolid material state. Submitted paper deals with the proposal of a new method designed for aluminium alloy fluidity evaluation in semi-solid state trough the design of the layered construction die. Die will be primary used for fluidity tests of semi-solid squeeze casted aluminium alloy and to observe the pressing force flow by mentioned casting technology. The modularity consists of possibility to change each die segment. In the experiment the die design was evaluated by simulation in ProCAST 11.5 and by production of experimental castings. The die was made by laser cutting technology from construction steel S355JR. Experimental material was aluminium alloy AlSi7Mg0.3. The temperature of the semisolid state was chosen to achieve 35% of solid phase. The result of next study should be a selected parameters observation and their effect on the fluidity of aluminium alloy in semi-solid state. This will be very important step to determine the optimal conditions to achieve a castings with certain wall thickness produced by the method of semi-solid squeeze casting.

Przejdź do artykułu

Autorzy i Afiliacje

D. Martinec
R. Pastirčák
ORCID: ORCID

Abstrakt

The paper discusses the effect of upsetting ratio on distribution of the microhardness in longitudinal sections of hydroformed axisymmetric elements made from P265TR1 steel. The experimental research of hydroforming was carried out at a special stand which included a press with tooling and a hydraulic feeding system of oil. The measurements of microhardness were taken with a MATSUZAWA MMT-X3 Vickers hardness tester at a load of 100 g. The samples used in the tests were prepared from tube segments with a thin-wall ratio of 0.045. In the experiment, steel components were formed at upsetting coefficients of 0.07 and 0.09. For an established course of pressure and upsetting force, a series of steel components with exact representation of the die-cavity was formed. The paper provides a comparison of the microhardness distributions in three zones of longitudinal sections of axisymmetric elements at different degrees of material deformation. The greatest values of microhardness occurred in the area of cap for components at an upsetting coefficient 0.09.

Przejdź do artykułu

Autorzy i Afiliacje

T. Miłek

Abstrakt

With the aid of eutectic modification treatment, the precipitation of coarse lamellar eutectic silicon can be suspended during the solidification of aluminum-silicon alloys, thereby the formation of fine-grained, fibrous eutectic Si can be promoted by the addition of small amounts of modifying elements, such as Sr, to the liquid alloy. The effectiveness of this technique is, however, highly dependent on many technological factors, and the degree of modification can be lowered during the various stages of melt preparation due to the oxidation of the Sr-content of the melt. During our research, we investigated the effect of rotary degassing melt treatments coupled with the addition of three different fluxes on the degree of modification of an Al-Si-Mg-Cu casting alloy. It was also studied, that whether additional Sr alloying made before and during the melt treatments can compensate the Sr fading with time. The degree of eutectic modification was characterized by thermal analysis (TA) and the microscopic investigation of TA specimens. It was found, that by using one of the three fluxes, and by adding Sr master alloy rods before the melt treatments, better modification levels could be achieved. It was also found that the measurement of Sr-concentration by optical emission spectroscopy alone cannot be used for controlling the level of eutectic modification.

Przejdź do artykułu

Autorzy i Afiliacje

F. Vincze
M. Tokár
G. Fegyverneki
G. Gyarmati

Abstrakt

Heat treatment processes, due to qualitative requirements for the cast machinery components and restrictions on energy consumption resulting on the one hand from environmental concerns, and on the other hand from a requirements coming from minimization of manufacturing costs, are resulting in searching after a technologies enabling obtainment of satisfactory results, in form of improved mechanical properties mainly, while minimizing (limiting) parameters of successive operations of the heat treatment. Heat treatment of the T6 type presented in this paper consists in operations of heating of investigated alloys to suitably selected temperature (range of this temperature was evaluated on the base of the ATD method), holding at such temperature for a short time, and next rapid cooling in water (20 oC) followed by artificial ageing, could be such technology in term s of above mentioned understanding of this issue. Performed T6 heat treatment with limited parameters of solutioning operation resulted in visible increase in tensile strength Rm of AlSi7Mg, AlSi7Cu3Mg and AlSi9Cu3(Fe) alloys.

Przejdź do artykułu

Autorzy i Afiliacje

J. Pezda

Abstrakt

The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm2, intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm2, randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 μm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm2, 50 s, and up to 1.16 GPa for 40 J/cm2, 200 s.

Przejdź do artykułu

Autorzy i Afiliacje

D. Zaguliaev
S. Konovalov
Y. Ivanov
A. Abaturova
A. Leonov

Abstrakt

The microstructure of Al-Si alloy has coarse silicon and this structure is known dangerous for mechanical properties due to its crack effect. Sr addition is preferred to modify the coarse silica during solidification. Additionally, bifilms (oxide structure) are known as a more dangerous defect which is frequently seen in light alloys. It is aimed at that negative effect of bifilms on the properties of the alloys tried to be removed by the degassing process and to regulate the microstructure of the alloy. In this study, the effect of degassing and Sr modification on the mechanical properties of AlSi12Fe alloy was investigated, extensively. Four different parameters (as-received, as-received + degassing, Sr addition, Sr addition + degassing) were studied under the same conditions environmentally. The microstructural analyses and mechanical tests were done on cast parts. All data obtained from the experimental study were analyzed statistically by using statistical analysis software. It was concluded from the results that Sr addition is very dangerous for AlSi12Fe alloy. It can be suggested that to reach high mechanical properties and low casting defects, the degassing process must be applied to all castings whereas Sr addition should not be preferred.

Przejdź do artykułu

Autorzy i Afiliacje

M. Uludağ
M. Gurtaran
D. Dispinar
ORCID: ORCID

Abstrakt

The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.

Przejdź do artykułu

Autorzy i Afiliacje

A. Kotarska
D. Janicki
J. Górka
ORCID: ORCID
T. Poloczek

Abstrakt

Recently, aluminum matrix syntactic foams (AMSFs) have become notably attractive for many different industrial areas like automotive, aerospace, construction and defense. Owing to their low density, good compression response and perfect energy absorption capacity, these advanced composite materials are also considered as strong alternatives to traditional particle reinforced composites and metal foams. This paper presents a promising probability of AMSF fabrication by means of industrial cold chamber die casting method. In this investigation, contrary to other literature studies restricted in laboratory scale, fully equipped custom-build cold chamber die casting machine was used first time and all fabrication steps were designed just as carried out in the real industrial high pressure casting applications. Main casting parameters (casting temperature, injection pressure, piston speed, filler pre-temperature and piston waiting time) were optimized in order to obtain flawless AMSF samples. The density alterations of the syntactic foams were analyzed depending upon increasing process values of injection pressure, piston speed and piston waiting time. In addition, macroscopic and microscopic investigations were performed to comprehend physical properties of fabricated foams. All these efforts showed almost perfect infiltration between filler particles at the optimized injection parameters.

Przejdź do artykułu

Autorzy i Afiliacje

C. Bolat
A. Goksenli

Abstrakt

The study investigates the effect of the organic compound representing the cellulose derivative - sodium salt of carboxymethyl cellulose (CMC/Na) on the structure of the main component of bentonite (B) - montmorillonite (MMT). Structural analysis revealed that the CMC/Na of different viscosity interacts with the mineral only via surface adsorption, causing at the same time partial or full delamination of its layered structure. This was confirmed by the XRD diffraction tests. Such polymer destructive influence on the structure of the modified main component of the bentonite limits the use of its composites as an independent binder in moulding sand technology, but does not exclude it from acting as an additive being a lustrous carbon carrier. According to the IR spectra of the B/CMC/Na materials, it can be stated that the interaction between the organic and inorganic parts is based on the formation of hydrogen bonds. That kind of the interpretation applies especially to the MMT modified in the bentonite with a lower viscosity polymer. The characteristics of the main IR absorption bands for composites with a higher viscosity polymer indicates the formation of less stable structures suggesting the random nature of the hydrogen bonds formation.

Przejdź do artykułu

Autorzy i Afiliacje

S. Cukrowicz
B. Grabowska
K. Kaczmarska
A. Bobrowski
M. Sitarz
B. Tyliszczak

Instrukcja dla autorów

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Zasady etyki publikacyjnej


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Procedura recenzowania


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Recenzenci

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji