[1] F . Crotogino,
Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 391-409 (2016).
[2] S. Donadei, G.S. Schneider,
Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 113-133 (2016).
[3] J.G. Speight,
Recovery, storage, and transportation. Speight J.G. (ed.) Natural Gas (Second Edition), Gulf Professional Publishing, 149-186 (2019).
[4] J. Chen, D. Lu, W. Liu, J. Fan et al.,
Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. Journal of Energy Storage 27, 101131 (2020). DOI:
https://doi.org/10.1016/j.est.2019.101131 [5] S. Mokhatab, W.A. Poe, J.Y. Mak,
Natural gas fundamentals. In: Mokhatab S., Poe W.A., Mak J.Y. (eds.),
Handbook of natural gas transmission and processing (Fourth Edition), Gulf Professional Publishing, 1-35 (2019).
[6] H. Yin, C. Yang, H. Ma,
Study on damage and repair mechanical characteristics of rock salt under uniaxial compression. Rock Mech. Rock Eng. 52, 659-671 (2019). DOI:
https://doi.org/10.1007/s00603-018-1604-0 [7] Q. Zhang, J. Liu, L. Wang, M. Luo et al.,
Impurity efects on the mechanical properties and permeability characteristics of salt rock. Energies 13, 1366 (2020). DOI:
https://doi.org/10.3390/en13061366 [8] K.M. Looff, K.M. Looff, C.A. Rautman,
Salt spines, boundary shear zones and anomalous salts: their characteristics, detection and influence on salt dome storage caverns. SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado, (2010).
[9] K.M. Looff, K.M. Looff, C.A. Rautman,
Inferring the geologic significance and potential imapact of salt fabric and anomalous salt on the development and long-term operation of salt storage caverns on gulf coast salt domes. SMRI Spring Technical Conference, 26-27 April 2010, Grand Junction, Colorado (2010).
[10] Q. Zhang, Z. Song, J. Wang, Y. Zhang et al.,
Creep properties and constitutive model of salt rock. Advances in Civil Engineering 8867673 (2021). DOI:
https://doi.org/10.1155/2021/8867673 [11] J.K. Warren,
Evaporites: sediments, resources and hydrocarbons. Springer Springer-Verlag Berlin Heidelberg (2006).
[12] J.K. Warren,
Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Science Reviews 165, 302-341 (2017). DOI:
https://doi.org/10.1016/j.earscirev.2016.11.008 [13] A. Luangthip, N. Wilalak, T. Thongprapha, K. Fuenkajorn,
Effects of carnallite content on mechanical properties of Maha Sarakham rock salt. Arab. J. Geosc. 10, 149, (2017).
[14] R .C.M. Franssen, C.J. Spiers,
Deformation of polycrystalline salt in compression and in shear at 250-350°C. In: R.J. Knipe, E.H. Rutter (eds),
Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 201-213 (1990).
[15] S.V. Raj, G.M. Pharr,
Effect of temperature on the formation of creep substructure in sodium chloride single crystal. J. Amer. Cer. Soc. 75, 347-352 (1992).
[16] P.E. Senseny, J.W. Handin, F.D. Hansen, J.E. Russell,
Mechanical behavior of rock salt: phenomenology and micro-mechanisms. Int. J. Rock Mech. Min. Sc. 29, 363-378 (1992).
[17] M.S. Bruno,
Geomechanical analysis and design considerations for thin-bedded salt caverns: final report. Arcadia, CA: Terralog Technologies USA (2005).
[18] M.S. Bruno, L. Dorfmann, G. Han K, Lao. Et al.,
3D geomechanical analysis of multiple caverns in bedded salt. SMRI Fall Technical Conference, 1-5 October 2005, Nancy, France, 1-25 (2005).
[19] K.L. De Vries, K.D. Mellegard, G.D. Callahan, W.M. Goodman,
Cavern roof stability for natural gas storage in bedded salt. RESPEC final report 26 September 2002 – 31 March 2005 for United States Department of Energy National Energy Technology Laboratory (2005).
[20] C. Jie, L. Dan, L. Wei, F. Jinyang et al.,
Stability study and optimization design of smallspacing two-well (SSTW) salt caverns for natural gas storage. J. Ener. Stor. 27, 101131 (2020). DOI:
https://doi.org/10.1016/j.est.2019.101131 [21] J.L. Li, Y. Tang, X.L. Shi, W. Xu et al.,
Modelling the construction of energy storage salt caverns in bedded salt. Appl. Energ. 255, 113866 (2019). DOI:
https://doi.org/10.1016/j.apenergy.2019.113866 [22] T . Wang, X. Yan, H. Yang, X. Yang et al.,
A new shape design method of salt cavern used as underground gas storage. Appl. Energ. 104, 50-61 (2013). DOI:
https://doi.org/10.1016/j.apenergy.2012.11.037
[23] T .T. Wang, C.H. Yang, X.L. Shi, H.L. Ma, Y.P. et al.,
Failure analysis of thick interlayer from leaching of bedded salt caverns. Int. J. Rock Mech. Min. Sci. 73, 175-183 (2015). DOI:
https://doi.org/10.1016/j.ijrmms.2014.11.003 [24] T . Wang, C. Yang, H. Ma, Y. Li et al.,
Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 83, 95-106 (2016). DOI:
https://doi.org/10.1016/j.ijrmms.2016.01.005 [25] Y . Wang, J. Liu,
Critical length and collapse of interlayer in rock salt natural gas storage. Adv. Civ. Eng., Article ID 8658501 (2018). DOI:
https://doi.org/10.1155/2018/8658501 [26] H. Yin, C. Yang, H. Ma, X. Shi et al.,
Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotech. 15, 549-563 (2020). DOI:
https://doi.org/10.1007/s11440-019-00901-y [27] G. Zhang, Y. Li, J.J.K. Daemen, C. Yang et al.,
Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations: a case study in Huai’an City, China. Rock Mech. Rock Eng. 48, 5, 2111-2127 (2015). DOI:
https://doi.org/10.1007/s00603-014-0672-z [28] N . Zhang, X.L. Shi, T.T. Wang, C. Yang et al.,
Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China. Energy 134, 504-514 (2017). DOI:
https://doi.org/10.1016/j.energy.2017.06.073 [29] J.L. Li, X. Shi, C. Yang, Y. Li et al.,
Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. J. Nat. Gas Sci. Eng. 45, 848-859 (2017). DOI:
https://doi.org/10.1016/j.jngse.2017.07.004 [30] K.M. Looff,
The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. American Gas Association Operations Conference 2-5 May 2017, Orlando, Florida (2017).
[31] J. Li, X. Shi, C. Yang, Y. Li et al.,
Mathematical model of salt cavern leaching for gas storage in high insoluble salt formations. Sci. Rep. 8, 372, 1-12 (2018). DOI:
https://doi.org/10.1038/s41598-017-18546-w [32] Y . Charnavel, J. O’Donnell, T. Ryckelynck,
Solution Mining at Stublach. SMRI Spring Technical Conference 27-28 April 2015 Rochester, New York, USA (2015).
[33] K. Looff, J. Duffield, K. Looff,
Edge of Salt Definition for Salt Domes and Other Deformed Salt Structures – Geologic and Geophysical Considerations. SMRI Spring Technical Conference 27-30 April 2003, Houston, Texas, USA (2003).
[34] L.H. Gevantman (ed.),
Physical properties data for rock salt. Monograph 161, U.S. Deptartment of the Commerce, National Bureau of Standards, Government Printing Office, Washington D.C. (1981).
[35] A. Garlicki,
Salt Mines at Bochnia and Wieliczka. Przegląd Geologiczny 56, 8/1, 663-669 (2008).
[36] J. Wachowiak,
Poziomy mineralne w solach cechsztyńskich wysadu solnego Kłodawa jako narzędzie korelacji litostratygraficznej. Kwartalnik AGH – Geologia 36, 2, 367-393 (2010).
[37] D .H. Kupfer,
Problems associated with anomalous zones in Louisiana salt stocks, USA. In: A.H. Coogan and L. Hauber, eds., Fifth Symposium of Salt, Hamburg Germany, June 1978, Northern Ohio Geological Society, Cleveland 1, 119-134 (1980).
[38] D .H. Kupfer,
Anomalous features in the Five Island Salt Stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions 40, 425-437 (1990).
[39] Z . Schléder, J.L. Urai,
Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int. J. Earth Sci. (Geol Rundsch) 94, 5-6, 941-955 (2005). DOI:
https://doi.org/10.1007/s00531-005-0503-2 [40] J.L. Urai, Z. Schléder, C.J. Spiers, P.A. Kukla,
Flow and transport properties of saltrocks. In: R. Littke, U. Bayer, D. Gajewski, S. Nelskamp (eds.)
Dynamics of complex intracontinental basins: The Central European Basin System. Berlin: Springer, 277-90 (2008).
[41] J.L. Urai, C.J. Spiers,
The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In: M. Wallner, K. Lux, W. Minkley, H. Hardy (eds.), Proceedings of the 6th conference on the mechanical behavior of salt, Hannover, Germany (2007).
[42] M. Azabou, A. Rouabhi, L. Blanco-Martìn,
Effect of insoluble materials on the volumetric behavior of rock salt. J. Rock Mech. Geotech. Eng. 13, 1, 84-97 (2021). DOI:
https://doi.org/10.1016/j.jrmge.2020.06.007 [43] R .K. Dubey,
Bearing of structural anisotropy on deformation and mechanical response of rocks: an experimental example of rocksalt deformation under variable compression rates. J. Geol. Soc. India 91, 109-114 (2018). DOI:
https://doi.org/10.1007/s12594-018-0826-9. [44] Y. Li, W. Liu, C. Yang, J.J.K. Daemen,
Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69, 39-49 (2014). DOI:
https://doi.org/10.1016/j.ijrmms.2014.03.006 [45] W . Liang, C. Yang, Y. Zhao, M.B. Dusseault, J. Liu,
Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 44, 3, 400-411 (2007). DOI:
https://doi.org/10.1016/j.ijrmms.2006.09.007 [46] W . Liu, Z. Zhang, J. Fan, D. Jiang, J.J.K. Daemen,
Research on the Stability and Treatments of Natural Gas Storage Caverns with Different Shapes in Bedded Salt Rocks. IEEE Access, 8, 18995-19007 (2020). DOI: https://doi. org/10.1109/ACCESS.2020.2967078
[47] K.D. Mellegard, L.A. Roberts, G.D. Callahan,
Effect of sylvite content on mechanical properties of potash. Pierre Bérest, Mehdi Ghoreychi, Faouzi Hadj-Hassen, Michel Tijani (eds.) Mechanical Behaviour of Salt VII Edition 1st Edition, Imprint CRC Press (2012).
[48] D .E. Munson,
Constitutive model of creep in rock salt applied to underground room closure. Int. J. Rock Mech. Min. Sci. 34, 233-247 (1997). DOI:
https://doi.org/10.1016/S0148-9062(96)00047-2 [49] A. Pouya,
Correlation between mechanical behaviour and petrological properties of rock salt. Proceedings of the 32nd US Symposium on Rock Mechanics, USRMS (1991).
[50] H. Alkan, Y. Cinarb, G. Pusch,
Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int. J. Rock Mech. Min. Sci. 44, 108-119 (2007). DOI:
https://doi.org/10.1016/j.ijrmms.2006.05.003 [51] Von Sambeek L., Ratigan J.L., Hansen F.D.,
Dilatancy of Rock Salt in Laboratory Tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 7, 735-738 (1993). DOI:
https://doi.org/10.1016/0148-9062(93)90015-6 [52] U. Hunsche, A. Hampel,
Rock salt – The mechanical properties of the host rock material for a radioactive waste repository. Eng. Geol. 52, 271-291 (1999). DOI:
https://doi.org/10.1016/S0013-7952(99)00011-3 [53] O . Schulze, T. Popp, H. Kern,
Development of damage and permeability in deforming rock salt. Eng. Geol. 61, 163-180 (2001). DOI:
https://doi.org/10.1016/S0013-7952(01)00051-5 [54] H. Moriya, T. Fujita, H. Niitsum,
Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany. Int. J. Rock Mech. Min. Sci. 43, 49-57 (2006). DOI:
https://doi.org/10.1016/j.ijrmms.2005.04.003 [55] W . Liang, C. Zhang, H. Gao, X. Yang et al.,
Experiments on mechanical properties of salt rocks under cycling loading. J. Rock Mech. Geotech. Eng. 4, 1, 54-61 (2012). DOI:
https://doi.org/10.3724/SP.J.1235.2012.00054 [56] C. Jie, J. Zhang, S. Ren, L. Li, L. Yin,
Determination of damage constitutive behaviour for rock salt under uniaxial compress ion condition with acoustic emission. The Open Civil Engineering Journal 9, 75-81 (2015). DOI:
https://doi.org/10.2174/1874149501509010075 [57] H. Mansouri, R. Ajalloeian,
Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19-27 (2018). DOI:
https://doi.org/10.1016/j.ijrmms.2018.07.006 [58] D . Flisiak,
Laboratory testing of geomechanical properties for selected Permian rock salt deposits. Miner. Resour. Manag. 24, 121-140 (2008).
[59] C. Yang, T. Wang, Y. Li, H. Yang et al.,
Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energ. 137, 467-481 (2015). DOI:
https://doi.org/10.1016/j.apenergy. 2014.07.048 [60] G. Speranza, A. Vona, S. Vinciguerra, C. Romano,
Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula. Tectonophysics 666, 103-120 (2016). DOI:
https://doi.org/10.1016/j.tecto.2015.10.018 [61] Y.-L. Zhao, W. Wan,
Mechanical properties of bedded rock salt. Electron. J. Geotech. Eng. 19, 9347-9353 (2014).
[62] M. Kolano, D. Flisiak,
Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Studia Geotechnica et Mechanica 35, 1, 119-127 (2013). DOI:
https://doi.org/10.2478/sgem-2013-0010 [63] K. Cyran,
Tectonics of Miocene salt series in Poland. PhD thesis, AGH University of Science and Technology, Cracow (2008).
[64] D . Flisiak, K. Cyran,
Właściwości geomechaniczne mioceńskich soli kamiennych. Biuletyn Państwowego Instytutu Geologicznego 429, 43-49 (2008).
[65] J. Chen, C. Du, D. Jiang, J. Fan, J. He,
The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering 10, 3, 325-334 (2016). DOI:
https://doi.org/10.12989/gae.2016.10.3.325 [66] U. Hunsche,
Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: M. Aubertin, H.R. Hardy (eds.), Proceedings of the fourth conference on the mechanical behaviour of salt, 17-18 June, Montreal. Clausthal, Trans Tech. Publications; 163-7 (1996).
[67] C.J. Spiers, N.L. Carter,
Microphysics of rocksalt flow in nature. In: Aubertin M, Hardy HR, editors. The mechanical behavior of salt proceedings of the 4th conference, Trans Tech. Publ. Series on Rock and Soil Mechanics, 22, 15-128 (1998).
[68] J.L. Ratigan, L.L. von Sambeek, K.L. DeVries,
The influence of seal design on the development of the disturbed rock zone in the WIPP alcove seal tests. RSI-0400, Sandia National Laboratories, Albuquerque, USA (1991).
[69] U.E. Hunsche,
Failure behaviour of rock salt around underground cavities. In: H. Kakihana (ed.), Proceedings of the Seventh Symposium on Salt, Kyoto, Elsevier Science Publisher, Amsterdam, 1, 59-65 (1993).
[70] Z . Zhang, D. Jiang, W. Liu, J. Chen et al.,
Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks. Environ. Earth. Sci. 78, 10, 292 (2019). DOI:
https://doi.org/10.1007/s12665-019-8292-2 [71] R . Dadlez, W. Jaroszewski,
Tektonika. Wydawnictwo Naukowe PWN Warszawa (1994).
[72] R .D. Lama, V.S. Vutukuri,
Handbook on mechanical properties of rocks. Trans. Tech. Publ. III, Zurich, Switzeland (1978).
[73] K. Cyran, T. Toboła, P. Kamiński,
Wpływ cech petrologicznych na właściwości mechaniczne soli kamiennej z LGOM (Legnicko-Głogowskiego Okręgu Miedziowego). Biuletyn Państwowego Instytutu Geologicznego 466, 51-63 (2016).
[74] A. Łaszkiewicz,
Minerały i skały solne. Prace Muzeum Ziemi 11, 101-188 (1967).
[75] W . Liu, Y.P. Li, Y.S. Huo, X.L. Shi et al.,
Analysis on deformation and fracture characteristics of wall rock interface of underground storage caverns in salt rock formation. Rock and Soil Mechanics 34, 6, 1621-1628 (2013).
[76] J. Poborski, K. Skoczylas-Ciszewska,
O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Rocznik Polskiego Towarzystwa Geologicznego 33, 3, 340-347 (1963).
[77] L. Wei, L. Yinping, Y. Chunhe, H. Shuai, W. Bingwu,
Analysis of Physical and Mechanical Properties of Impure Salt Rock. 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013, ARMA- 2013-336 (2013).
[78] C.J. Peach, C.J.
Spiers, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256 (1-4), 101-128 (1996). DOI:
https://doi.org/10.1016/0040-1951(95)00170-0 [79] G.M. Pennock, M.R. Drury, C.J. Spiers,
The development of subgrain misorientations with strain in dry synthetic NaCl measured using EBSD. J. Struct. Geol. 27, 12, 2159-2170 (2005). DOI:
https://doi.org/10.1016/j. jsg.2005.06.013 [80] G.M. Pennock, M.R. Drury, C.J. Peach, C.J. Spiers,
The influence of water on deformation microstructures and textures in synthetic NaCl measured using EBSD. J. Struct. Geol. 28, 4, 588-601 (2006). DOI:
https://doi.org/10.1016/j.jsg.2006.01.014 [81] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers,
Rheological behaviour of synthetic rock salt: the interplay between water, dynamic recrystallisation and deformation mechanisms. J. Struct. Geol. 27, 948-963 (2005). DOI:
https://doi.org/10.1016/j.jsg.2005.04.008 [82] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers,
Dynamic recrystallisation of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396, 1-2, 35-57 (2005). DOI:
https://doi.org/10.1016/j.tecto.2004.10.002 [83] N .L. Carter, F.D. Hansen,
Creep of rock salt. Tectonophysics 92, 275-333 (1983). DOI:
https://doi.org/10.1016/0191-8141(93)90168-A [84] S.J. Bauer, B. Song, B. Sanborn,
Dynamic compressive strength of rock salts. Int. J. Rock Mech. Min. Sci. 113, 112-120 (2019). DOI:
https://doi.org/10.1016/j.ijrmms.2018.11.004 [85] K. Liang, L.Z. Xie, B. He, P. Zhao et al.,
Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods. Int. J. Rock Mech. Min. Sci. 138, 104592 (2021). DOI:
https://doi.org/10.1016/j.ijrmms.2020.104592 [86] S.Y. Li, J.L. Urai,
Rheology of rock salt for salt tectonics modelling. Petrol. Sci. 13, 712-724 (2016). DOI:
https://doi.org/10.1007/s12182-016-0121-6 [87] Z . Schléder, J.L. Urai, Deformation and recrystallisation mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J. Struct. Geol. 29, 241-255 (2007). DOI:
https://doi.org/10.1016/j.jsg.2006.08.014 [88] C.J. Spiers, PM.T.M. Schutjens, R.H. Brzesowsky, C.J. Peach et al.,
Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: R.J. Knipe, E.H. Rutter (eds.) Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 1, 215-27 (1990).
[89] J.L. Urai, C.J. Spiers, H.J. Zwart, G.S. Lister,
Weakening of rock salt by water during long-term creep. Nature 324, 554-557 (1986). DOI:
https://doi.org/10.1038/324554a0 [90] J.L. Urai, C.J. Spiers, C.J. Peach, R.C.M.W. Franssen, J.L. Liezenberg,
Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geology en Mijnbouw 66, 165-176 (1987).
[91] R .K. Dubey, V.K. Gairola,
Influence of structural anisotropy on the uniaxial compressive strength of pre-fatigued rocksalt from Himachal Pradesh, India. Int. J. Rock Mech. Min. Sci. 37, 993-999 (2000). DOI:
https://doi.org/10.1016/S1365-1609(00)00020-4 [92] R .K. Dubey, V.K. Gairola,
Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: an experimental approach. J. Struct. Geol. 30, 6, 710-718 (2008). DOI:
https://doi.org/10.1016/j.jsg.2008.01.007 [93] R .A. Lebensohn, P.R. Dawson, H.M. Kern, H.R. Wenk,
Heterogeneous deformation and texture development in halite polycrystals: comparison of different modelling approaches and experimental data. Tectonophysics 370 (1-4), 287-311 (2003). DOI:
https://doi.org/10.1016/S0040-1951(03)00192-6 [94] J.R. Hirth, L. Kubin (Eds),
Dislocations in solids. The 30th anniversary volume. Elsevier (2009).
[95] M.P.A. Jakson, M.R. Hudec,
Salt tectonics principles and practice. Cambridge University Press (2017).
[96] D .R. Askeland, P.P. Fulay, W.J. Wright,
The Science and Engineering of Materials. Cengage Learning Inc. (2010).
[97] J. Wichert, H. Konietzky, C. Jakob,
Salt Mechanics. TU Bergakademie Freiberg, Institut für Geotechnik, Freiberg (2018).
[98] G. Wang,
A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 41, 61-67 (2004). DOI:
https://doi.org/10.1016/j.ijrmms.2004.03.020 [99] Z . Hou,
Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Technische Universität Clausthal, Professur für Deponietechnik und Geomechanik. Papierflieger (1997).
[100] U. Hunsche, O. Schulze,
Das Kriechverhalten von Steinsalz. Kali und Steinsalz, 11, 238-255 (1994).
[101] K.H. Lux,
Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. F. Enke Verlag (1984).
[102] R .M. Günther,
Erweiterter Dehnungs-Verfestigungs-Ansatz: phänomenologisches Stoffmodell für duktile Salzgesteine zur Beschreibung primären, sekundären und tertiären Kriechens. Ph.D. dissertation, Institut für Geotechnik, Technische Universität Bergakademie Freiberg (2009).
[103] C. Missal, A. Gährken, J. Stahlmann,
Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz. BMBF-Verbundvorhaben, Einzelbericht zum Teilvorhaben (2016).
[104] D .E. Munson,
Preliminary deformation mechanism map for salt (with application to WIPP). Sandia Rep. SAND 79-0076 (1979).
[105] D .E. Munson, P.R. Dawson,
Constitutive model for the low temperature creep of salt (with application to WIPP). Sandia Rep. SAND 79-1853 (1979).
[106] D .E. Munson,
Constitutive model of creep in polycrystalline halite based on workhardening and recovery. International Symposium on Plasticity and its Current Applications. Baltimore, MD (United States) (1993).
[107] N .L. Carter, S.T. Horseman, J.E. Russell, J. Handin,
Rheology of rock salt. J. Struct. Geol. 15, 9, 1257-1271 (1993). DOI:
https://doi.org/10.1016/0191-8141(93)90168-A [108] F .D. Hansen, P. E. Senseny, T.W. Pfeifle, T.J. Vogt,
Influence of impurities on the creep of salt from the Palo Duro basin. 29th U.S. Symposium on Rock Mechanics (USRMS), June 1988, Minneapolis, Minnesota (1988).
[109] D .E. Munson,
Analysis of Multistage and other creep data from domal salts. SANDIA report 98-2276 (1998).
[110] T .W. Pfeifle, T.J. Vogt, G.A. Brekken,
Correlation of Chemical, Mineralogic, and Physical Characteristics of Gulf Coast Dome Salt to Deformation and Strength Properties. Solution Mining Research Institute Report no. 94-0004-5 (1995).
[111] A. Pouya,
Correlation Between Mechanical Behaviour And Petrological Properties of Rock Salt. In: J.C. Roegiers (ed.), Proceedings of 32nd US symposium on rock mechanics 385-92. Balkema, Rotterdam, ARMA-91-385 (1991).
[112] J. Ślizowski, S. Nagy, S. Burliga, K. Serbin, K. Polański,
Laboratory investigations of geotechnical properties of rock salt in Polish salt deposits. In: R.L., Mellegard K., Hansen F. (eds.) Mechanical behavior of salt VIII: Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII : Rapid City, USA, 26-28 May 2015, CRC Press Taylor & Francis Group, 33-38 (2015).
[113] U. Hunsche,
Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: Aubertin, M., Hardy Jr., H.R. (Eds.), The Mechanical Behavior of Salt IV; Proc. of the Fourth Conf., (MECASALT IV), Montreal 1996. TTP Trans Tech Publications, Clausthal, 163-174 (1998).
[114] C. Du, C.H. Yang, H.L. Ma, X.L. Shi, J. Chen,
Study of creep characteristics of deep rock salt. Rock and Soil Mechanics 33, 8, 2451-2520 (2012).
[115] X.D. Qui, Y. Jiang, Z.L. Yan, Q.C. Zhuang,
Creep damage failure of rock salt. Journal of Chongqing University 26, 3,106-109 (2003).
[116] J.W. Hustoft, R.D. Arnold, L.A. Roberts,
Effects of sylvite and carnallite content on creep behavior of potash. SMRI Spring Technical Conference 23-24 April 2012, Regina, Saskatchewan, Canada (2012).
[117] L.J. Ma, H.F. Xu, M.Y. Wang, E.B. Li,
Numerical study of gas storage stability in bedded rock salt during the complete process of operating pressure runaway. Chinese Journal of Rock Mechanics and Engineering 34, S2, 4108-4115 (2015).
[118] M.M. Tang, Z.Y. Wang, G.S. Ding, Z.N. Ran,
Creep property experiment and constitutive relation of salt-mudstone interlayer. Journal of China Coal Society 35, 1, 42-45 (2010).
[119] Z .W. Zhou, J.F. Liu, F. Wu, L. Wang et al.,
Experimental study on creep properties of salt rock and mudstone from bedded salt rock gas storage. Journal of Sichuan University (Engineering Science Edition) 48, S1, 100-106 (2016).
[120] W .G. Liang, C.H. Yang, Y.S. Zhao,
Physico-mechanical properties and limit operation pressure of gas deposit in bedded salt rock. Chinese Journal of Rock Mechanics and Engineering 27, 1, 22-27 (2008).
[121] Y .L. Zhao, Y. Zhang, W. Wan,
Mechanical properties of bedded rock salt and creep failure model. Mineral Engineering Research 25, 1, 6-20 (2010).
[122] C.H. Yang, H.J. Mao, X.C. Wang, X.H. Li, J.W. Chen,
Study on variation of microstructure and mechanical properties of water-weakening slates. Rock and Soil Mechanics 27, 6, 2090-2098 (2006). DOI:
https://doi.org/10.1201/9781439833469.ch24 [123] J.E. Lindqvist, U. Åkesson, K. Malaga,
Microstructure and functional properties of rock materials. Mat. Charact. 58, 1183-1188 (2007). DOI:
https://doi.org/10.1016/j.matchar.2007.04.012 [124] X. Shi, Y.F. Cheng, S. Jiang, D.S. Cai, T. Zhang,
Experimental study of microstructure and rock properties of shale samples. Chinese Journal of Rock Mechanics and Engineering 33, 3439-3445 (2014).
[125] T. Toboła, K. Cyran, M. Rembiś,
Petrological and Microhardness Study on Blue Halite from Kłodawa Salt Dome (central Poland). 9th Conference on the Mechanical Behavior of Salt (SaltMech IX), September 12-14, 2018, Hannover, Germany, (2018).
[126] T. Toboła, K. Cyran, M. Rembiś,
Microhardness analysis of halite from different salt-bearing formations. Geol. Quart. 63, 4, 771-785 (2019). DOI:
https://doi.org/10.7306/gq.1499 [127] T. Toboła, P. Kukiałka, The Lotsberg Salt formation in Central Alberta (Canada) – petrology, geochemistry and fluid inclusions. Minerals 10, 868 (2020). DOI:
https://doi.org/10.3390/min10100868 [128] S. Zelek, K. Stadnicka, J. Szklarzewicz, L. Natkaniec-Nowak, T. Toboła,
Halite from Kłodawa: the attempt of correlation between lattice defor mation and spectroscopic properties in UV-VIS. Gospodarka Surowcami Mineralnymi PAN 3, 159-172 (2008).
[129] S. Zelek, K. Stadnicka, T. Toboła, L. Natkaniec-Nowak,
Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineral. Petrol. 108, 619-631 (2014). DOI:
https://doi.org/10.1007/s00710-014-0323-9 [130] A. Tuğrul, I.H. Zarif,
Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51, 4, 303-317 (1999). DOI:
https://doi.org/10.1016/S0013-7952(98)00071-4 [131] A.A. Momeni, G.R. Khanlari, M. Heidari, A.A. Sepahi, E. Bazvand,
New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 185, 43-51 (2015). DOI:
https://doi.org/10.1016/j.enggeo.2014.11.012 [132] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori,
Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI:
https://doi.org/10.1016/j.ijrmms.2012.12.042