Applied sciences

Archives of Mining Sciences

Content

Archives of Mining Sciences | 2024 | vol. 69 | No 1

Download PDF Download RIS Download Bibtex

Abstract

The paper presents research on the influence of grain size of selected coals and their structural parameters on the diffusion coefficient and methane sorption isotherms. Two coals from Polish hard coal mines, differing in the coal rank, were tested. Sorption isotherms for methane were determined. An unconventional sequence of pressures 0→0.1→0→0.5→0→1.5 MPa was employed to assess the speed of achieving sorption equilibrium at different pressures. The studies of CH4 accumulation kinetics were performed on various grain classes of the tested coals. Both the sorption capacity of coal and the diffusion coefficient proved to be highly sensitive to the experimental methodology. Critical measurement parameters in terms of determining the diffusion coefficient concerning the assumptions of the Crank model were indicated. The influence of the equivalent radius of coal grain on the process kinetics was demonstrated. The stepwise pressure increase factor was examined in the context of minimising the impact of sorption isotherm non-linearity on the results. The importance of the width of the grain class of coals was determined to reduce their maceral inhomogeneities. These factors are the most common reason that makes it difficult to quantitatively compare diffusion coefficient values.
Go to article

Authors and Affiliations

Katarzyna Kozieł
1
ORCID: ORCID
Aleksandra Gajda
1
ORCID: ORCID
Marta Skiba
1
ORCID: ORCID
Norbert Skoczylas
2
ORCID: ORCID
Anna Pajdak
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
  2. AGH University of Kraków, Facu lty of Geology, Geoph ysics and Environmental Protection,al. Mick iewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study examines the application of dry gas injection technology (cycling process) in different depletion stages (25%, 50%, 75%, 100% of the initial reservoir pressure, and the dew point pressure) at a gas condensate field. The injection took place with varying numbers of injection wells relative to production wells (4:1, 3:1, 2:1, 1:1, and 1:2). The study assessed the impact of dry gas injection periods, ranging from 1 to 3 years, on increasing the condensate recovery factor in a real gas condensate reservoir named X. A hydrodynamic model was used and calibrated with historical data, resulting in a comprehensive approach. Compared to the traditional depletion development method, this approach led to a significant 9% rise in the condensate recovery factor. The results indicate that injection has a positive effect on enhancing the recovery factor of condensate and gas when compared to primary development methods based on depletion. As a result, these findings facilitate a rapid evaluation of the possibility of introducing similar measures in gas-condensate reservoirs in the future for reservoir systems that have a low and moderate potential for liquid hydrocarbons C5+. The optimised multidimensional hydrodynamic calculations, utilising geological and technological models, are crucial in determining the parameters for the technological production and injection wells.
Go to article

Authors and Affiliations

Oleksii Udovchenko
1
ORCID: ORCID
Jacek Blicharski
1
ORCID: ORCID
Liliia Matiishyn
2
ORCID: ORCID

  1. AGH University of Krakow, al.Mickiewicza 30, 30-059 Kraków, Poland
  2. Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The roof-caving step scale goaf behind the working face is sensitive to the region’s spontaneous combustion and gas concentration distribution, including many rock block cracks and holes. A severe deviation from the dynamics of fluids in porous media by representative element volume (REV), leading to the results of Computational Fluid Dynamics (CFD) simulation, has a significant error. A heterogeneous two-dimensional pore network model was established to simulate the goaf flow accurately. The network was first created using the simple cubic lattice in the OpenPNM package, and the spatial distribution of the “O-ring” bulking factor was mapped to the network. The bulking factor and Weibull distribution were combined to produce the size distribution of the pore and throat in the network. The constructed pore network model was performed with single-phase flow simulations. The study determined the pore structure parameters of the pore network through the goaf’s risked falling characteristics and described the flow field’s distribution characteristics in the goaf. The permeability coefficient increases as pore diameter, throat diameter, pore volume and throat volume increase and increases as throat length decreases. The correlation between throat volume and permeability coefficient is the highest, which indicates that the whole throat is the main control factor governing the air transport capacity in the goaf. These results may provide some guidelines for controlling thermodynamic disasters in the goaf.
Go to article

Authors and Affiliations

Ke Gao
1
ORCID: ORCID
Qiwen Li
1
ORCID: ORCID
Lianzeng Shi
1
ORCID: ORCID
Aobo Yang
1
ORCID: ORCID
Zhipeng Qi
1
ORCID: ORCID

  1. Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control Of Ministry Of Education, China
Download PDF Download RIS Download Bibtex

Abstract

The geopolitical situation in Europe has changed dramatically due to the war waged by the Russian Federation in Ukraine. This makes it necessary to become independent from supplies of mineral resources, especially energy from Russia. According to the authors, ensuring Poland’s energy security will require a longer use of coal as the primary energy resource than initially expected. The expected increase in energy demand may cause a negative energy balance in the country. Renewable energy sources dependent on weather conditions cannot with certainty ensure energy security. On the other hand, nuclear requires large financial outlays and a longer time for reactors’ construction. In addition, it has other disadvantages (the problem of waste, environmental impact in the event of a malfunction and the need to import uranium). In these circumstances, coal may be a raw material that meets the economic needs and ensures the energy security of the country.
Go to article

Authors and Affiliations

Piotr Strzałkowski
1
ORCID: ORCID
Marek Maruszczyk
2
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and IndustrialAutomation, 2a Akademicka Str., 44-100 Gliwice, Poland
  2. Carbo Mar Consulting, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present research aims to address the drinking water crisis in the Mahan River catchment area resulting from the disruption of groundwater availability due to extensive coal mining. The study uses GIS-based Multi-Criteria Decision Analysis (MCDA) to map the groundwater potential of the area by analysing several factors that affect groundwater availability, including rainfall, water depth, geomorphology, geology, soil, land-cover/land-use, and topographic characteristics derived from DEM. The groundwater potential map created using the MCDA technique classified the area into low, moderate, and high groundwater potential zones. The map was validated and verified using water table depth and electrical conductivity values available in the region, indicating that it can be used to identify groundwater recharging sites. The study’s results show that about 30% of the area has high groundwater potential, and more than 45% of the area has moderate groundwater potential. The information derived from the study can be used for sustainable management and proper planning of groundwater resources in the Mahan River catchment area. Overall, the study presents a useful approach to address the groundwater depletion problem resulting from coal mining activities in the Mahan River catchment area.
Go to article

Authors and Affiliations

Rukaiya Kausher
1
ORCID: ORCID
Anand Kumar Sinha
1
ORCID: ORCID
Rambabu Singh
2
ORCID: ORCID

  1. Central Mine Planning and Design Institute Limited, Bilaspur, India
  2. Birla Institute of Technology, Mesra, India
Download PDF Download RIS Download Bibtex

Abstract

Methane explosions are one of the greatest hazards in the coal mining industry and have caused many accidents. On 27 July 2016 at approximately 11:01 a.m., an explosion of methane occurred at the bottom of Zygmunt return shaft at the depth of 411 metres. The explosion resulted in one casualty.
The article presents the results of, and the conclusions from, an in-depth analysis of the changes in the parameters of mine air, especially methane concentration, air flow and the operation of mine fans, recorded by sensors installed in the workings and in Zygmunt ventilation shaft around the time of the accident. The analysis was based on signals recorded by the monitoring system, related to the evolution of methane and fire hazards prior to and after the accident occurred. An attempt was made to identify the cause and the circumstances of the methane explosion at the bottom of the return shaft.
Go to article

Authors and Affiliations

Stanisław Wasilewski
1
ORCID: ORCID
Nikodem Szlązak
2
ORCID: ORCID
Paweł Jamróz
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str.,30-059 Kraków, Poland
  2. AGH University of Kraków, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article shows the results of research on methane concentration changes along mine galleries. The experiment was conducted in a longwall area mined using a U-type system, and the results were obtained in situ. The main goal was to measure methane concentration by function of gallery length and dividing segments of methane data into segments, which ultimately enabled separate analysis of these methane data. The analysis led to the diagnosis of methane hazard through the detection of exceedance of the assumed tolerance area.
Go to article

Authors and Affiliations

Piotr Ostrogórski
1
ORCID: ORCID
Przemysław Skotniczny
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta Str.,30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The destruction of rock under the condition of a close submerged jet has become a hot topic of scientific research and engineering application in the past decade. With the unremitting efforts of a large number of experts and scholars around the world, gratifying progress has been made in the research of computational fluid dynamics (CFD) on the internal and external flow fields of the jet nozzle, the theoretical derivation of rock mechanics on the fracture initiation and propagation criteria of hydraulic fracturing, and the numerical simulation of jet erosion mechanism under the coupling of fluid and solid fields, however, for the rock mechanics hydraulic fracturing cutting engineering scale of non-oil drilling fracturing technology, the research on the fluid-solid coupling boundary conditions of fracturing fluid and hard dense rock under the flow state conditions of the submerged field inside and outside the borehole is not sufficient. In the calculation of the fluid-solid coupling boundary flow field under the non-submerged jet state, the control equation with Reynolds number between 2300-4000 shall be selected, while it belongs to the laminar flow state in the stage of hole sealing and pressurised fracturing. Therefore, Von-Mises equivalent plastic stress is selected in the mechanical model to calibrate the failure state of the rock-solid boundary, and the control equations of laminar flow and turbulent flow are selected to calibrate the fluid boundary. The mechanism of different stages of rock breaking by hydraulic fracturing jet can be further analysed in detail, and Comsol 6.0 multi-physical field simulation software is selected for verification. The research results will help deepen the understanding of rock breaking mechanism by jet and optimise the selection of parameters for field construction.
Go to article

Authors and Affiliations

Lei Shi
1
ORCID: ORCID
Weiyong Lu
1 2
ORCID: ORCID
Dong Lv
3 4
ORCID: ORCID

  1. Lyuliang University, Departme nt of Mining Engineering, Lvliang, Shanxi 033001, China
  2. Lvliang Engineering Research Center of Intelligent Coal Mine, Lvliang, Shanxi 033001, China
  3. Inner Mongolia Energy Group Co., Ltd., Hohhot, Inner Mongolia 010090, China
  4. Inner Mongolia Tongsheng Selian Coal Development Co., Ltd. Ordos, Inner Mongolia 014399, China
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses a variety of serious challenges facing the Polish energy sector until 2040. These challenging tasks largely result from intensive works in the European Union on the finalisation of measures implementing a zero-carbon economy, as well as social (Covid-19), political and military events, both global and regional (war in Ukraine). After analysing the present condition of the energy sector, the authors proposed a modification of Poland’s energy policy, pointing out that the transformation of the national electricity system towards zero-carbon energy requires, on the one hand, speeding up investments in renewable sources, but on the other hand, insuring this process by own controllable generation sources. The paper also defines the conditions that should be met to achieve the highest possible share of non-carbon energy in the national energy mix by 2040.
Go to article

Authors and Affiliations

Stanisław Tokarski
1
ORCID: ORCID
Antoni Tajduś
2
ORCID: ORCID

  1. Central Mining Institute, Plac Gwarków 1, 40-166 Katowice , Poland
  2. AGH University of Kraków, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.
Go to article

Authors and Affiliations

Zhiqiang Yin
1
ORCID: ORCID
Chao Wang
1
ORCID: ORCID
Zhiyu Chen
2
ORCID: ORCID
Youxun Cao
3
ORCID: ORCID
Tao Yang
3
ORCID: ORCID
Deren Chen
4
ORCID: ORCID
Dengke Wang
4
ORCID: ORCID

  1. Anhui University of Science and Technology, School of Mining Engineering, Anhui ProvinceCoal Mine Safety Mining Equipment Manufacturing Innovat ion Center, Huainan 232001,China
  2. Industrial and Energy Administrat ion of Xishui County, Zunyi 564699, China
  3. Great Wall No.6 Mining Co. LTD, Etuokeqianqi 016200, China
  4. Shandong Huakun Geological Engineering Co. LTD, Taian 271413, China

Instructions for authors

General information


It is essential for us that authors write and prepare their manuscripts according to the instructions and specifications listed below. Therefore, authors are strongly encouraged to read these instructions carefully before preparing a manuscript for submission.


Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in all fields of mining sciences which include:

- mining technologies,

- stability of mine workings,

- rock mechanics,

- geotechnical engineering and tunnelling,

- mineral processing,

- mining and engineering geology,

- mining geophysics,

- mining geodesy

- ventilation systems,

- environmental protection in mining,

- economical aspects in mining,

- mining machine science.

Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.


AMS publishes research and review articles, technical notes.

Papers suitable for publication in AMS are those which:

- contain original work - the main result is not published elsewhere neither by the authors nor somebody else, and is not currently under consideration for publication in any other journal,

- are focused on the core aims and scope of the journal,

- are clearly and correctly written in English.

Authors are required to contribute to the cost of publication – publication charge 1000 PLN or 250 Euro. There is no submission charge.


Electronic submission:

All submissions must be made electronically via Editorial System https://www.editorialsystem.com/editor/amsc/articles/list/?qt=NEW


Language

The papers should be written in English.


Length of paper

The research and review articles may not exceed 16 typewritten pages, technical notes -10 pages, format A4 including figures and tables.


Format

The initial submission should be sent as Microsoft World (Arial, 12 points, line spacing - 1,5) or pdf file with all drawings, pictures and tables placed in the text.

After acceptance the text (in Microsoft Word), figures and tables should be sent as separate files.


Layout of the manuscript

First and last name(s) of the author(s), title of the article, abstract, keywords, methodology and introduction to the topics, results, conclusions, acknowledgements and references. The subtitles should conform to the decimal system of numbering.


Abstracts

The abstract should briefly summarize the most important results reported in the paper (up to 200 words).


Keywords: 4-6 keywords


Formulae

Formulae should be prepared with Microsoft Equation, written clearly with distinct notation of upper and lower indices and parentheses, maintaining an uniform numbering.


Tables

Tables should be prepared as separate file in Microsoft World format.

Figures

If possible, the figures should be prepared with a vector graphics software (.cdr, .wmf, .al or .dxf formats) or as .eps, .jpg, .bmp (figures width no greater than 13.5 cm). Use Arial font for the comments on drawings in size 6-10 points. The photographs should be converted to high resolution scans in *.jpg or *.tiff format. Figures should be submitted as separate files.


References

A new type of literature provision has been in force since 2020 – modified vancouver style.

Please follow the instructions below.

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, title of the article (obligatory), journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: http://library.caltech.edu/reference/abbreviations/ everyone abbreviation should be end with a dot - example. Arch. Metall. Mater.] or book title; journal volume or book publisher; page spread; publication year in bracket, full DOI number).

Please note the correct layout punctation (commas and periods), and spaces.

Please note the arrangement of dots, commas and spaces.

First we write the initial of the name, dot, space, surname, volume must be written BOLD, at the name of the authors, do not write a word “and” write only a comma. We give the year of publication at the end of the sentence in brackets and DOI number (full notation and linked).

The use of DOI numbers (full notation and linked) is mandatory for each paper and should be formatted as shown in the examples below:

Samples

Journals:

[1] L.B. Magalas, Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer . Arch. Metall. Mater. 60 (3), 2069-2076 (2015). DOI: https://doi.org/10.1515/AMM-2015-0350

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large Magnetic Field-Induced Work output in a NiMgGa Seven-Lavered Modulated Martensite. Appl. Phys. Lett. 107, 152407 (2015). DOI: https://doi.org/10.1063/1.4933303

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, Suppression of Interdiffusion in Copper/Tin thin Films. J. Mater. Eng. Perform. (2012). DOI: https://doi.org/10.1007/s11665-011-0090-2.

Books:

[4] K.U. Kainer (Ed.), Metal Matrix Composites, Wiley-VCH, Weinheim (2006).

[5] K. Szacilowski, Infochemistry: Information Processing at the Nanoscale, Wiley (2012).

[6] L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, Springer, New York (2008).

Proceedings or chapter in books with editor(s):

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major, P. Zięba (Eds.), Foundation of Materials Design 2006, Research Signpost (2006).

Internet resource:

[8] https://www.nist.gov/programs-projects/crystallographic-databases, accessed: 17.04.2017

Academic thesis (PhD, MSc):

[9] T. Mitra, PhD thesis, Modeling of Burden Distribution in the Blast Furnace, Abo Akademi University, Turku/Abo, Finland (2016).


Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "Copyright agreement", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).


License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/).

This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

This page uses 'cookies'. Learn more