This paper presents a comparison of the blending efficiency of eight high-speed rotary impellers in a fully baffled cylindrical vessel under the turbulent flow regime of agitated charge. Results of carried out experiments (blending time and impeller power input) confirm that the down pumping axial flow impellers exhibit better blending efficiency than the high-speed rotary impellers with prevailing radial discharge flow. It follows from presented results that, especially for large scale industrial realisations, the axial flow impellers with profiled blades bring maximum energy savings in comparison with the standard impellers with inclined flat blades (pitched blade impellers).
A mathematical model for a two-phase fluidised bed bioreactor with liquid recirculation and an external aerator was proposed. A stationary nonlinear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.
An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.
A mathematical model of a plane, steady state biofilm, with the use of a single substrate kinetics, was proposed. A set of differential equations was solved. In order to analyse the biofilm’s behaviour, a number of simulations were performed. The simulations included varying process parameters such as detachment coefficient and substrate loading. Two detachment models were taken into consideration: one describing the detachment ratio as proportional to the thickness of the biofilm, and the other one proportional to the thickness of the biofilm squared. The results provided information about substrate and live cell distribution in biofilm and the influence of certain parameters on biofilm behaviour.
Polish Academy of Sciences, Institute of Chemical Engineering, 44-100 Gliwice, Bałtycka 5, Poland A review concerning main processes of hydrogenation of carbon oxides towards synthesis of methanol, mixture of methanol and higher aliphatic alcohols and one-step synthesis of dimethyl ether as well as methanol steam reforming is given. Low-temperature methanol catalysts and lowtemperature modified methanol catalysts containing copper as primary component and zinc as secondary one are described.
The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.
The aim of this work was to present the numerical simulation results determining the distributions of flow velocity and pressure in the individual channels of a plate heat exchanger. The simulations have been conducted by means of the Finite Volume Method (FVM) of numerical computation using the ANSYS CFX software. The computational model constituted spaces between 10 flat, straight flow type plates of the heat exchanger. The obtained results of numerical simulations confirm the presence of inhomogeneous flow conditions in the neighbouring channels between the plates. The computations enabled to point out the regions on the plates, in which insufficient flow can result in problems with their cleaning. The results of this work constitute the first part of a research leading to an assessment of cleaning conditions in plate heat exchangers.