Details Details PDF BIBTEX RIS Title Standard Deviation of the Mean of Autocorrelated Observations Estimated with the Use of the Autocorrelation Function Estimated From the Data Journal title Metrology and Measurement Systems Yearbook 2011 Issue No 4 Authors Zięba, Andrzej ; Ramza, Piotr Keywords autocorrelated data ; time series ; effective number of observations ; estimators of variance ; measurement uncertainty Divisions of PAS Nauki Techniczne Coverage 529-542 Publisher Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation Date 2011 Type Artykuły / Articles Identifier DOI: 10.2478/v10178-011-0052-x ; ISSN 2080-9050, e-ISSN 2300-1941 Source Metrology and Measurement Systems; 2011; No 4; 529-542 References Zięba A. (2010), Effective number of observations and unbiased estimators of variance for autocorrelated data - an overview, Metrol. Meas. Syst, 17, 3, doi.org/10.2478/v10178-010-0001-0 ; Chipman J. (1968), Efficiency of the sample mean when residuals follow a first-order stationary Markoff process, J. Amer. Statist. Assoc, 63, 1237, doi.org/10.2307/2285880 ; Pham T. (1992), On the best unbiased estimate for the mean of a short autoregressive time series, Econometric Theory, 8, 120, doi.org/10.1017/S026646660001077X ; Bayley G. (1946), The "effective" number of independent observations in an autocorrelated time series, J. R. Stat. Soc. Suppl, 8, 184, doi.org/10.2307/2983560 ; Box G. (1994), Time Series Analysis: Forecasting and Control. ; Zhang N. (2006), Calculation of the uncertainty of the mean of autocorrelated measurements, Metrology, 43, 276, doi.org/10.1088/0026-1394/43/4/S15 ; Percival D. (1993), Three curious properties of the sample variance and autocovariance for stationary processes with unknown mean, The American Statistician, 47, 274, doi.org/10.2307/2685286 ; Quenouille M. (1949), Approximate tests of correlation in time-series, J. R. Statist. Soc. B, 11, 68. ; Marriott F. (1954), Bias in the estimation of autocorrelations, Biometrika, 41, 390. ; Zieba, A., Ramza, P., to be published. ; ISO/IEC. (1995). <i>Guide to the Expression of Uncertainty in Measurement.</i> Geneva: ISO. ; (2008), Powder Diffraction: Theory and Practice.