Details
Title
Identification of the heat transfer coefficient in phase change problemsJournal title
Archives of ThermodynamicsYearbook
2010Issue
No 1 MarchAuthors
Keywords
Inverse Stefan problem ; SolidificationDivisions of PAS
Nauki TechniczneCoverage
61-78Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2010Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10173-010-0004-ySource
Archives of Thermodynamics; 2010; No 1 March; 61-78References
Ang D. (1998), Regularization of an inverse two-phase Stefan problem, Nonlinear Anal, 34, 719. ; Grzymkowski R. (2006), Numerical method for multi-phase inverse Stefan design problems, Arch. Metall. Mater, 51, 161. ; Grzymkowski R. (2006), One-phase inverse Stefan problems solved by Adomian decomposition method, Comput. Math. Appl, 51, 33. ; Liu J. (1997), A comparative study of domain embedding methods for regularized solutions of inverse Stefan problems, Int. J. Numer. Methods Engrg, 40, 3579. ; Ren H.-S. (2007), Application of the heat-balance integral to an inverse Stefan problem, Int. J. Therm. Sci, 46, 118. ; Słota D. (2007), Direct and inverse one-phase Stefan problem solved by variational iteration method, Comput. Math. Appl, 54, 1139. ; Zabaras N. (1990), Inverse finite element techniques for the analysis of soldification processes, Int. J. Numer. Methods Engrg, 29, 1569. ; Zabaras N. (1993), On the solution of an ill-posed design solidification problem using minimization techniques in finite- and infinite-dimensional function space, Int. J. Numer. Methods Engrg, 36, 3973. ; Grzymkowski R. (2002), Parallel Processing, and Applied Mathematics, 2328, 679. ; Bunday B. (1984), Basic Optimisation Method. ; Nelder J. (1965), A simplex method for function minimization, The Comp. Journal, 7, 308. ; Chambers L. (2001), The Practical Handbook of Genetic Algorithms, Applications. ; Michalewicz Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, doi.org/10.1007/978-3-662-03315-9 ; Osyczka A. (2002), Evolutionary Algorithms for Single and Multicriteria Design Optimization. ; Burczyński T. (2002), Evolutionary optimization in thermoelastic problems using the boundary element method, Comput. Mech, 28, 317. ; Divo E. (2000), Characterization of space dependent thermal conductivity with a BEM-based genetic algorithm, Numer. Heat Transf. A, 37, 845. ; Karr Ch. (2000), Solving inverse initial-value, boundaryvalue problems via genetic algorithm, Eng. Appl. Artif. Intel, 13, 625. ; Mera N. (2004), A multi-population genetic algorithm approach for solving ill-posed problems, Comput. Mech, 33, 254. ; Wrobel L. (2004), Genetic algorithms for inverse cathodic protection problems, Eng. Anal. Bound. Elem, 28, 267. ; Słota D. (2008), Using genetic algorithms for the determination of an heat transfer coefficient in three-phase inverse Stefan problem, Int. Comm. Heat & Mass Transf, 35, 149. ; Słota D. (2008), Solving the inverse Stefan design problem using genetic algorithms, Inverse Probl. Sci. Eng, 16, 829. ; Majchrzak E. (1995), Application of the BEM in the thermal theory of foundry, Eng. Anal. Bound. Elem, 16, 99. ; Rogers J. (1979), The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal, 16, 563. ; Beck J. (1985), Inverse Heat Conduction. Ill Posed Problems. ; Kurpisz K. (1995), Inverse Thermal Problems. ; Tikhonov A. (1977), Solution of Ill-Posed Problems. ; Lait E. (1973), Mathematical modeling of heat flow in the continuous casting of steel, Ironmaking and Stellmaking, 44, 589. ; B Mochnacki (1995), Numerical Methods in Computations of Foundry Processes. ; Słota D. (2006), Artificial Intelligence, and Soft Computing, 217. ; Słota D. (2006), Computational Science - ICCS 2006, 3991, 786. ; Słota D. (2006), Influence of the selection method on the solution of an inverse Stefan problem using genetic algorithms, null, 285.Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China