Details

Title

Application of sorption heat pumps for increasing of new power sources efficiency

Journal title

Archives of Thermodynamics

Yearbook

2010

Issue

No 2 July

Authors

Keywords

fuel cells ; Sorbent materials ; Heat pumps ; Heat pipes ; Heat exchangers ; Trigeneration

Divisions of PAS

Nauki Techniczne

Coverage

21-43

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-010-0007-8

Source

Archives of Thermodynamics; 2010; No 2 July; 21-43

References

Simander G. (null), Fuel cell technology for natural gas. ; Aristov Y. (2008), Chemical and sorption heat engines: state of the art development prospects in the Russian Federation and the Republic of Belarus, J. Eng. Physics & Thermophysics, 81, 1, 17. ; Vasiliev L. (1999), Multisalt-carbon chemical cooler for space applications, J. Eng. Physics & Thermophysics, 72, 595. ; Lepinasse E. (2001), Cooling storage with resorption process. Application to a box temperature control, Appl. Therm. Eng, 21, 1251. ; Vasiliev L. (1992), Solid adsorption refrigerators with active carbon-acetone and carbon-ethanol pairs. ; Vasiliev L. (1999), A solar and electrical solid sorption refrigerator, Int. L. Thermal Sci, 38, 220. ; Vasiliev L. (2001), A solar-gas solid sorption refrigerator, J. Adsorption, 7, 149. ; Raldow W. (1979), Chemical heat pumps — a basic thermodynamic analysis, Solar Energy, 23, 75. ; Wonggsuwan W. (2001), Review of chemical heat pump technology and applications, Appl. Therm. Eng, 21, 1489. ; Poelstra S. (2002), Techno-economic feasibility of hightemperature high-lift chemical heat pumps for upgrading industrial waste heat, Appl. Therm. Eng, 22, 1619. ; Meunier F. (1985), Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles: application to the zeolite-water pair, Heat Recovery Systems, 5, 133. ; Tozer R. (1997), Fundamental thermodynamics of ideal absorption cycles, Int. J. Refrig, 20, 2, 120. ; El-Sharkwary I. (2006), Experimental investigation on adsorption of ethanol onto activated carbon fibers for possible application in adsorption cooling system, Appl. Therm. Eng, 26, 859. ; Sharkawy I. (2008), Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications, Int. J. Refrig, 31, 1407. ; Lu Y. (2003), Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning, Energy Conversion & Management, 44, 1733. ; Wang L. (2004), Compound adsorbent for adsorption ice maker on fishing boats, Int. J. Refrig, 27, 401, doi.org/10.1016/j.ijrefrig.2003.11.010 ; Lambert M. (2005), Review of Regenerative Adsorption Heat Pumps, J. Thermophysics & Heat Transfer, 19, 4, 471. ; Vasiliev L., Kanonchik L., Antukh A., Kulakov A., Rosin I.: <i>Waste Heat Driven Solid Sorption Coolers.</i> SAE Technical Paper 941580, 1994. ; Vasiliev L. (1996), Complex compound/ammonia coolers, null. ; Vasiliev L. (1996), NAX zeolite, carbon fiber and CaCl<sub>2</sub> ammonia reactors for heat pumps and refrigerators, J. Adsorption, 2, 311. ; Neveu P. (1993), Solid-gas chemical heat pumps: field of application and performance of the internal heat of reaction recovery process, Heat Recov. Syst. CHP, 13, 233. ; Critoph R. (1988), Performance limitations of adsorption cycles for solar cooling, Solar Energy, 41, 21. ; Wang R. (2001), Adsorption refrigeration research in Shanghai Jiao Tong University, Renew Sust Energy Rev, 5, 1. ; Saha B. (2003), Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system, Int. J. Refrig, 26, 749, doi.org/10.1016/S0140-7007(03)00074-4 ; Aristov Yu. (2006), Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature, Chem. Eng. Sci, 61, 1453. ; Mauran S. (2008), Solar heating and cooling by a thermochemical process, First experiments of a prototype storing 60 kWh by a solid/gas reaction. Solar Energy, 82, 623. ; Li T. (2007), Performance study of a highefficient multifunction heat pipe type adsorption ice making system with novel mass and heat recovery processes, Int. J. Therm. Sci, 46, 1267. ; Vasiliev L. (2002), Miniature heat pipes, experimental analysis and software, null. ; Spinner B. (1996), Cascading Sorption Machines: New Concepts for the Power Control of Solid-Gas Thermochemical Systems, null, 2, 531. ; Vasiliev L. (2002), Multisalt-carbon portable chemical heat pump, null, 463. ; Meunier F. (1998), Solid sorption heat powered cycles for cooling and heat pumping applications, Appl. Therm. Eng, 18, 715. ; Lepinasse E. (1994), Modelling and experimental investigation of anew type of thermochemical transformer based on the coupling of two solid-gas reactions, Chem. Eng. Proc, 33, 125. ; Choi H. (1996), System modeling and parameter effects on designand performance of ammonia based thermochemical transformer, null. ; Goetz V. (1997), A solid-gas thermochemical cooling system using BaCl<sub>2</sub> and NiCl<sub>2</sub>, Energy, 22, 49. ; Vasiliev L. (2004), Resorption heat pump, Appl. Therm. Eng, 24, 1893. ; Aidoun Z. (2002), Salt impregnated carbon fibres as the reactive medium in a chemical heat pump: the NH<sub>3</sub>-CoCl<sub>2</sub> system, Appl. Therm. Eng, 22, 1163. ; Aidoun Z. (2002), The synthesis reaction in a chemical heat pump reactor filled with chloride salt impregnated carbon fibers: the NH<sub>3</sub>-CoCl<sub>2</sub> system, Appl. Therm. Eng, 22, 1943.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×