Details

Title

Measurement of heat flux density and heat transfer coefficient

Journal title

Archives of Thermodynamics

Yearbook

2010

Issue

No 3 September

Authors

Keywords

Heat flux ; heat transfer coefficient ; inverse problem ; Temperature measurement

Divisions of PAS

Nauki Techniczne

Coverage

3-18

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-010-0011-z

Source

Archives of Thermodynamics; 2010; No 3 September; 3-18

References

Neal S. (1975), The development of the thin-film naphthalene mass-transfer analogue technique for the direct measurement of heat transfer coefficients, Int. J. Heat Mass Transfer, 18, 559. ; White F. (1991), Heat and Mass Transfer, 651. ; Mizushina T. (1971), The Electrochemical Method in Transport Phenomena. Advances in Heat Transfer 7, 87. ; Lucas D. (1975), Evaluation of local and average convective heat transfer coefficients in a furnace using an electrolytic mass transfer model, Journal of the Institute of Fuel, 31. ; Matsumoto R. (1997), Effect of pin fin arrangement on endwall heat transfer, JSME International Journal, Series B, 40, 1, 142, doi.org/10.1299/jsmeb.40.142 ; Baughn J. (1998), A periodic transient method using liquid crystals for the measurement of local heat transfer coefficients, Transactions of the ASME, Journal of Heat Transfer, 120, 772. ; Wolfersdorf J. (1998), A data reduction procedure for transient heat transfer measurements in long internal cooling channels, Transactions of the ASME, Journal of Heat Transfer, 120, 314. ; Taler J. (1995), Theory and Practice of Identification of Heat Transfer Processes. ; Leland J. (1999), Free jet impingement heat transfer of a high Prandtl number fluid under conditions of highly varying properties, Transactions of the ASME, Journal of Heat Transfer, 121, 592. ; Wolfberg J. (2006), Data Analysis Using the Method of Least Squares. ; Janna W. (2008), Engineering Heat Transfer. ; Szydłowski H. (1994), Physics Laboratory. ; Moffat R. (1988), Describing the Uncertainties in Experimental Results, Experimental Thermal and Fluid Science, 1, 3. ; Kunze H. (1986), Physikalische Messmethoden, Eine Einführung in Prinzipien klassischer und moderner Verfahren. ; <i>FORTRAN-Subroutines for Mathematical Applications</i>, Vol. 2. IMSL, Visual Numerics, Houston 2008.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×