Details

Title

Skin-spar failure detection of a composite winglet using FBG sensors

Journal title

Archive of Mechanical Engineering

Yearbook

2017

Volume

vol. 64

Issue

No 3

Affiliation

Ciminello, Monica : Italian Aerospace Research Center, Capua, Italy ; De Fenza, Angelo : Department of Industrial Engineering – Aerospace Division, University of Naples “Federico II”, Naples, Italy ; De Fenza, Angelo : NOVOTECH s.r.l. – Aerospace Advanced Technology, Naples, Italy ; Dimino, Ignazio : Italian Aerospace Research Center, Capua, Italy ; Pecora, Rosario : Department of Industrial Engineering – Aerospace Division, University of Naples “Federico II”, Naples, Italy

Authors

Keywords

structural health monitoring ; optical fiber ; composite structure ; winglet

Divisions of PAS

Nauki Techniczne

Coverage

287-300

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] K. Diamanti and C. Soutis. Structural health monitoring techniques for aircraft composite structures. Progress in Aerospace Sciences, 46(8):342–352, 2010. doi: 10.1016/j.paerosci.2010.05.001.
[2] C. Bockenheimer and H. Speckmann. Validation, verification and implementation of SHM at Airbus. In Proceedings of the 9th International Workshop on Structural Health Monitoring (IWSHM 2013), Stanford University, Stanford, CA, USA, pages 10–12, 2013.
[3] H. Speckmann and H. Roesner. Structual Health Monitoring: A contribution to the intelligent aircraft structure. In Proceedings of ECNDT 2006, 9th European Conference on NDT, Berlin, Germany, Sept. 2006.
[4] O. Shapira, S. Kedem, B. Glam, N.Y. Shemesh, A. Dvorjetski, N. Mashiach, J. Balter, R. Shklovsky, I. Sovran, N. Gorbatov, et al. Implementation of a fiber-optic sensing technology for global structural integrity monitoring of UAVs. In The 54th Israel Annual Conference on Aerospace Sciences, Tel-Aviv, Israel, 2014.
[5] R. De Oliveira, O. Frazão, J.L. Santos, and A.T. Marques. Optic fibre sensor for real-time damage detection in smart composite. Computers & Structures, 82(17):1315–1321, 2004. doi: 10.1016/j.compstruc.2004.03.028.
[6] E. Di Lorenzo, G. Petrone, S. Manzato, B. Peeters,W. Desmet, and F. Marulo. Damage detection in wind turbine blades by using operational modal analysis. Structural Health Monitoring, 15(3):289–301, 2016. doi: 10.1177/1475921716642748.
[7] I. Dimino and A. Calabrò. Structural damage identification by vibration parametres and fibre optic sensors. Czech Aerospace, 2009(3):33–41, 2009.
[8] S. Bhalla and C.K. Soh. Structural health monitoring by piezo-impedance transducers. I: Modeling. Journal of Aerospace Engineering, 17(4):154–165, 2004. doi: 10.1061/(ASCE)0893-1321(2004)17:4(154).
[9] S. Bhalla and C.K. Soh. Electromechanical impedance modeling for adhesively bonded piezotransducers. Journal of Intelligent Material Systems and Structures, 15(12):955–972, 2004. doi: 10.1177/1045389X04046309.
[10] A. De Fenza, A. Sorrentino, and P. Vitiello. Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Composite Structures, 133:390–403, 2015. doi: 10.1016/j.compstruct.2015.07.089.
[11] R. Di Sante. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors, 15(8):18666–18713, 2015. doi: 10.3390/s150818666.
[12] H. Takeya, T. Ozaki, and N. Takeda. Structural health monitoring of advanced grid structure using multi-point FBG sensors. Proc. SPIE, 5762:204–211, 2005. doi: 10.1117/12.598759.
[13] H. Murayama, K. Kageyama, H. Naruse, A. Shimada, and K. Uzawa. Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures. Journal of Intelligent Material Systems and Structures, 14(1):3–13, 2003. doi: 10.1177/1045389X03014001001.
[14] G. Fabbi, M. Ciminello, A. Mataloni, P. Perugini, A. Sorrentino, and A. Concilio. Filament wound solid rocket motor vessels strain measurement and potential Structural Health Monitoring through fiber optics. In The space Propulsion 201 Conference, Rome, Italy, 2-6 May 2016. Paper No. SP2016-3125185.
[15] M. Ciminello, I. Dimino, S. Ameduri, and A. Concilio. Fiber optic shape sensor for morphing wing trailing edge. In Proceedings of 26th International Conference on Adaptive Structures and Technologies (ICAST2015), pages 312–318, 14-16 Oct. 2015.
[16] J.R. Lee, C.Y. Ryu, B.Y. Koo, S.G. Kang, C.S. Hong, and C.G. Kim. In-flight health monitoring of a subscale wing using a fiber bragg grating sensor system. Smart Materials and Structures, 12(1):147, 2003. doi: 10.1088/0964-1726/12/1/317.
[17] A. De Fenza, G. Petrone, R. Pecora, and M. Barile. Post-impact damage detection on a winglet structure realized in composite material. Composite Structures, 169:129–137, 2017. doi: 10.1016/j.compstruct.2016.10.004.
[18] MD Nastran. Quick Reference Guide, 2011.
[19] K.O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8):1263–1276, 1997. doi: 10.1109/50.618320.

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/meceng-2017-0017 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2017; vol. 64; No 3; 287-300
×