Details

Title

Theoretical study of heat conduction in the multi-disc brake integrated into the drive wheel AGV during braking

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

2

Affiliation

Varecha, Daniel : University of Žilina, Faculty of Mechanical Engineering, Department of Design and Mechanical Elements, Univerzitná 8215/1, 010 26 Žilina, Slovakia ; Kohár, Róbert : University of Žilina, Faculty of Mechanical Engineering, Department of Design and Mechanical Elements, Univerzitná 8215/1, 010 26 Žilina, Slovakia ; Lukáč, Michal : University of Žilina, Faculty of Mechanical Engineering, Department of Design and Mechanical Elements, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Authors

Keywords

simulation ; braking systems ; one-dimensional heat conduction ; multi-disc brake ; AGV ; ceramic vs. organic brake pads

Divisions of PAS

Nauki Techniczne

Coverage

e136718

Bibliography

  1.  D. Varecha, R. Kohar, and F. Brumercik, “AGV brake system simulation”, LOGI – Scientific Journal on Transport and Logistics 10(1), p. 9 (2019).
  2.  G. Kovács, “Novel supply chain concepts and optimization of virtual enterprises to reduce cost, increase productivity and boost competitiveness”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 973–980 (2018).
  3.  P. Piotrowski, D. Baczyński, S. Robak, M. Kopyt, M. Piekarz, and M. Polewaczyk, “Comprehensive forecast of electromobility mid-term development in Poland and its impacts on power system demand”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 697–709 (2020).
  4.  M. Belorit et al., “Description of the bearing check program for countershaft gearboxs”, Proceding of 58th International Conference of Machine Design Departmens (ICDM), Prague, 2017, pp. 32–35.
  5.  M. Jacyna, R. Jachimowsky, E. Szczepański, and M. Izdebski, “Road vehicle sequencing problem in a railroad intermodal terminal – simulation research”, Bull. Pol. Acad. Sci. Tech. Sci. 68(5), 1135–1148 (2020).
  6.  D. Varecha, R. Kohar, and T. Gajdosik, “Optimizing the braking system for handling equipment”, IOP Conf. Ser.: Mater. Sci. Angl. 659, 012062 (2019).
  7.  S. Devansh, P. Sahil, and R.S. Aravind, “Industry 4:0: Tools and Implementation”, Manag. Prod. Angl. Rev. 10(3), 3–13 (2019).
  8.  K. Chwesiuk, “Integrated computer system of management in logistics”, Arch. Transp. 23(2), 153–163 (2011).
  9.  T. Kornuta, C.C. Zieliński, and T. Winiarski, “A universal architectural pattern and specification method for robot control system design”, Bull. Pol. Acad. Sci. Tech. Sci. 68(1), 3–29 (2020).
  10.  L. Kucera, T. Gajdosik, I. Gajdac, M. Mruzek, and M. Tomasikova, “Simulation of real driving cycles of electric cars in laboratory conditions”, Communications – Scientific Letters of the University of Zilina, 19(2A), 42–47 (2017).
  11.  M. Mruzek, I. Gajdac, L. Kucera, and T. Gajdosik, “The possibilityies of increasing the electric vehicle range”, TRANSCOM – International Scientific Conference on Sustainable, Modern and Safe Transprt, Procedia Engineering, 192, 621–625, (2017).
  12.  V. Kraus, Výpočet teplôt radiacích lamelových spojok a bŕzd (Calculation of temperature multi-disc shifting brake and shifting clutches), Habilitation thesis, p. 70, Žilina (1980), [in Slovak].
  13.  M. Lukac, F. Brumercik, L. Krzywonos, and Z. Krzysiak, “Transmission system power flow model”, Communications – Scientific Letters of the University of Zilina, 19(2), 27‒31, (2017).
  14.  A. Estevez-Torres et. al., “Fourier analysis to measure diffusion coefficients and resolve mixtures on a continuous electrophoresis chip”, Anal. Chem. 79(21), 8222–8231, (2007).
  15.  A.W. Orlowic, M. Mróz, G. Wnuk, O Markowska, W, Homik, and B. Kolbusz, “Coefficient of friction of a brake disc-brake pad friction couple”, Arch. Foundry Eng. 16, 196–200 (2016).
  16.  F. Talati and S. Jalalifar, “Analysis of heat conduction in disc brake system”, Heat Mass Transfer 45, 1047 (2009).
  17.  D.P. Milenković et al., “The influence of brake pads thermal conductivity on passenger car brake system efficiency”, Therm. Sci. 14, 221–230 (2010).
  18.  U. Siedlecka,”Heat conduction in the finite medium using the fractional single-phase-lag model”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 401–407 (2019).
  19.  M. Lenarczyk and R. Domański, “Investigation of non-fourier thermal waves interaction in a solid material”, Arch. Thermodyn. 40(1), 115–126 (2019).
  20.  D. Spałek, “Two relations for generalized discrete fourier transform coefficients”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 275–281 (2018).
  21.  K. Oprzędkiewicz, W. Mitkvski, E. Gawin, and K. Dziedzic, “The caputo vs. caputo-fabrizio operators in modeling of heat transfer process”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 501–507 (2018).
  22.  Y. Slavchev, L. Dimitrov, and Y. Dimitrov, “3-D computer research and comparative analysis of dynamic aspect of drum brakes and caliper disc brakes”, Arch. Mech. Eng. 65(2), 253–276 (2018).
  23.  T. Muszyńsky and S. Kozieł, “Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator”, Arch. Thermodyn. 37(3), 45–62 (2016).
  24.  K. Wolf, Integral transforms in science and engineering, pp. 255–378, 1st Edition, Springer US, Boston, 1979.

Date

08.03.2021 ; 07.03.2021

Type

Article ; Artykuł / Article

Identifier

DOI: 10.24425/bpasts.2021.136718

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136718
×