Details

Title

Trajectory determination for pipelines using an inspection robot and pipeline features

Journal title

Metrology and Measurement Systems

Yearbook

2021

Volume

vol. 28

Issue

No 3

Affiliation

Zhang, Shuo : University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada ; Dubljevic, Stevan : University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada

Authors

Keywords

trajectory determination ; pipeline inspection robot ; pipeline feature ; path reconstruction algorithm

Divisions of PAS

Nauki Techniczne

Coverage

439-453

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Bibliography

[1] Liu, Z.,&Kleiner,Y. (2013). State of the art reviewof the inspection technologies for condition assessment of water pipes. Measurement, 46(1), 1–15. https://doi.org/10.1016/j.measurement.2012.05.032
[2] Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. https://doi.org/10.1016/ https://j.ijpvp.2010.04.003
[3] Zhang, T.,Wang, X., Chen, Y., Shuai, Y., Ullah, Z., Ju, H., & Zhao, Y. (2019). Geomagnetic detection method for pipeline defects based on ceemdan and WEP-TEO. Metrology and Measurement Systems, 26(2), 345–361. https://doi.org/10.24425/mms.2019.128363
[4] Ju, H.,Wang, X., Zhang, T., Zhao, Y., & Ullah, Z. (2019). Defect recognition of buried pipeline based on approximate entropy and variational mode decomposition. Metrology and Measurement Systems, 26(4), 735–755. https://doi.org/10.24425/mms.2019.129587
[5] Piao, G., Guo, J., Hu, T.,&Deng, Y. (2019). High-sensitivity real-time tracking system for high-speed pipeline inspection gauge. Sensors, 19(3), 731. https://doi.org/10.3390/s19030731
[6] De Araújo, R. P., De Freitas, V. C. G., De Lima, G. F., Salazar, A. O., Neto, A. D. D., & Maitelli, A. L. (2018). Pipeline inspection gauge’s velocity simulation based on pressure differential using artificial neural networks. Sensors, 18(9), 3072. https://doi.org/10.3390/s18093072
[7] Chowdhury, M. S., & Abdel-Hafez, M. F. (2016). Pipeline inspection gauge position estimation using inertial measurement unit, odometer, and a set of reference stations. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2(2), 021001-1-10. https://doi.org/10.1115/1.4030945
[8] Coramik, M., & Ege, Y. (2017). Discontinuity inspection in pipelines: a comparison review. Measurement, 111, 359–373. https://doi.org/10.1016/j.measurement.2017.07.058
[9] Idroas, M., Abd Aziz, M. F. A., Zakaria, Z., & Ibrahim, M. N. (2019). Imaging of pipeline irregularities using a PIG system based on reflection mode ultrasonic sensors. International Journal of Oil, Gas and Coal Technology, 20(2), 212–223. https://doi.org/10.1504/IJOGCT.2019.097449
[10] Li, Z., Wang, J., Li, B., & Gao, J. (2014). GPS/INS/Odometer integrated system using fuzzy neural network for land vehicle navigation. Journal of Navigation, 67(6), 967–983. https://doi.org/ 10.1017/S0373463314000307
[11] Jiang, Q., Wu, W., Jiang, M., & Li, Y. (2017). A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/odometer. Sensors, 17(6), 1438. https://doi.org/ 10.3390/s17061438
[12] Georgy, J., Karamat, T., Iqbal, U., & Noureldin, A. (2011). Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solutions, 15(3), 239–252. https://doi.org/10.1007/s10291-010-0186-4
[13] Zhao, Y. (2015) Cubature plus extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems. IEEE Sensors Journal, 15(12), 6973–6985. https://doi.org/10.1109/JSEN.2015.2469105
[14] Guan, L., Cong, X., Zhang, Q., Liu, F., Gao, Y., An, W., & Noureldin, A. (2020). A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines, 11(9), 840. https://doi.org/10.3390/mi11090840
[15] Wang, L., Wang, W., Zhang, Q., & Gao, P. (2014). Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, 53(6), 064103. https://doi.org/10.1117/1.OE.53.6.064103
[16] Usarek, Z., &Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37–45. https://doi.org/10.1515/adms-2017-0014
[17] Sasani, S., Asgari, J., & Amiri-Simkooei, A. R. (2016). Improving MEMS-IMU/GPS integrated systems for land vehicle navigation applications. GPS solutions, 20(1), 89–100. https://doi.org/10.1007/s10291-015-0471-3
[18] Hyun, D., Yang, H. S., Park, H. S., & Kim, H. J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213–223. https://doi.org/10.1016/ j.mechatronics.2009.11.009
[19] Lee, D. H., Moon, H., Koo, J. C., & Choi, H. R. (2013). Map building method for urban gas pipelines based on landmark detection. International Journal of Control, Automation, and Systems, 11(1), 127–135. https://doi.org/10.1007/s12555-012-0049-6
[20] Li, T., Zhang, H., Niu, X., & Gao, Z. (2017). Tightly-coupled integration of multi-GNSS singlefrequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. https://doi.org/10.3390/s17112462
[21] Sahli, H., & El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory determination using pipeline junctions. Sensors, 16(4), 567. https://doi.org/10.3390/s16040567
[22] Guan, L., Cong, X., Sun, Y., Gao, Y., Iqbal, U., & Noureldin, A. (2017). Enhanced MEMS SINS aided pipeline surveying system by pipeline junction detection in small diameter pipeline, IFACPapersOnLine, 50(1), 3560–3565. https://doi.org/10.1016/j.ifacol.2017.08.962
[23] Crassidis, J. L., & Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems. CRC press. https://doi.org/10.1201/b11154
[24] Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of Inertial Navigation, Satellite- Based Positioning and their Integration. Springer Science & Business Media. https://doi.org/ 10.1007/978-3-642-30466-8
[25] Xu, L., Li, X. R., Duan, Z., & Lan, J. (2013). Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Transactions on Signal Processing, 61(11), 2927–939. https://doi.org/10.1109/TSP.2013.2255045

Date

2021.09.06

Type

Article

Identifier

DOI: 10.24425/mms.2021.137134
×