Details
Title
Investigations of thermal-flow characteristics of minichannel evaporator of air heat pumpJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 4Affiliation
Kowalczyk, Michał Jan : Lodz University of Technology, Institute of Turbomachinery, Wólczanska 217/221, 93-005 Łódz, Poland ; Łęcki, Marcin : Lodz University of Technology, Institute of Turbomachinery, Wólczanska 217/221, 93-005 Łódz, Poland ; Romaniak, Artur : Lodz University of Technology, Institute of Turbomachinery, Wólczanska 217/221, 93-005 Łódz, Poland ; Warwas, Bartosz : Lodz University of Technology, Institute of Turbomachinery, Wólczanska 217/221, 93-005 Łódz, Poland ; Gutkowski, Artur : Lodz University of Technology, Institute of Turbomachinery, Wólczanska 217/221, 93-005 Łódz, PolandAuthors
Keywords
CFD ; Numerical methods ; Heat exchanger ; Minichannel ; Louvered finDivisions of PAS
Nauki TechniczneCoverage
261-279Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Islam S., Islam M.S., Abedin M.Z.: Review on heat transfer enhancement by louvered fin. Int. J. Eng. Mater. Manufact. 6(2021), 60–80.[2] Muszynski T., Kozieł S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62.
[3] Dodiya K., Bhatt N., Lai F.: Louvered fin compact heat exchanger: a comprehensive review. Int. J. Amb. Energ. (2020).
[4] Wan R., Wang Y., Kavtaradze R., Ji H., He X.: Research on the air-side thermal hydraulic performance of louvered fin and flat tube heat exchangers under low-pressure environment. Exp. Heat Transfer 33(2020), 1, 81–99.
[5] Gunnasegaran P., Shuaib N.H., Abdul Jalal M.F.: The effect of geometrical parameters on heat transfer characteristics of compact heat exchanger with louvered fins. ISRN Thermodyn. (2012), 1–10.
[6] Djamal H.D., Woon Q.Y., Suzairin M.S., Hisham Amirnordin S.: Effects of geometrical parameters to the performance of louvered fin heat exchangers. Appl. Mech. Mater. 773-774(2015), 398–402.
[7] Amirnordin S.H., Didane H.D., Norani Mansor M., Khalid A, Suzairin M.S., Raghavan V.R.: Pressure drop and heat transfer characteristics of louvered fin heat exchangers. Appl. Mech. Mater. 465-466(2014), 500–504.
[8] Chan Kang H., Jun G.W.: Heat transfer and flow resistance characteristics of louver fin geometry for automobile applications. J. Heat Transfer. 133(2011), 1–6.
[9] Okbaz A., Olcay A.B., Cellek M.S., Pinarbasi A.: Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches. EPJ Web Conf. 143(2017), 02084.
[10] Park J.S., Kim J., Lee K.S.: Thermal and drainage performance of a louvered fin heat exchanger according to heat exchanger inclination angle under frosting and defrosting conditions. Int. J. Heat Mass Transf. 108(2017), 1335–1339.
[11] Liu X., Chen H., Wang X., and Kefayati G.: Study on surface condensate water removal and heat transfer performance of a minichannel heat exchanger. Energies 13(2020), 5, 1065
[12] Saleem A., Kim M.H.: CFD analysis on the air-side thermal-hydraulic performance of multi-louvered fin heat exchangers at low Reynolds numbers. Energies 10(2017), 6, 1–24.
[13] Bohdal T., Charun H., Sikora M.: Heat transfer during condensation of refrigerants in tubular minichannels. Arch. Thermodyn. 33(2012), 2, 3–22.
[14] ASHRAE: ANSI/ASHRAE Standard 41.2-1987: Standard Methods for Air Velocity and Airflow Measurement (2018).
[15] Manual Ansys-CFX, Release 2020 R2. http://www.ansys.com (accessed 15 July 2020).
[16] Jasinski P.B., Kowalczyk M.J., Romaniak A., Warwas B., Obidowski D., Gutkowski A.: Investigation of thermal-flow characteristics of pipes with helical micro-fins of variable height. Energies 14(2021), 8, 2048.
[17] Kang, Hie-Chan & Jun, Gil.: Heat transfer and flow resistance characteristics of louver fin geometry for automobile applications. J. Heat Transf. 133 (2011), 101802.
Date
2022.01.17Type
ArticleIdentifier
DOI: 10.24425/ather.2021.139662Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China