Details
Title
Analysis of Mercury Content Inside Mining Waste Dump – Case Study in the Upper Silesia in PolandJournal title
Archives of Mining SciencesYearbook
2022Volume
vol. 67Issue
No 1Affiliation
Michalska, Anna : Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland ; Smoliński, Adam : Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland ; Koteras, Aleksandra : Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, PolandAuthors
Keywords
Mine waste ; mercury ; waste dumping ground ; hazard pollution ; waste dump dismantlingDivisions of PAS
Nauki TechniczneCoverage
95-106Publisher
Committee of Mining PASBibliography
[1] S.A. Musstjab, A.K. Bhowmik, S. Qamar, S.T. Abbas Shah, M. Sohail, S.I. Mulla, M. Fasola, H. Shen, Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan. Sci. Total Environ. 569-570, 585-593 (2016).[2] X. Wang, Z. He, H. Luo, M. Zhang, D. Zhang, X. Pan, G.M. Gadd, Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci. Total Environ. 615 (15), 615-623 (2018).
[3] K . Halbach, Ø. Mikkelsen, T. Berg, E. Steinnes, The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567-574 (2017).
[4] D . Yu, H. Duan, Q. Song, X. Li, H. Zhang, H. Zhang, Y. Liu, W. Shen, J. Wang, Characterizing the environmental impact of metals in construction and demolition waste. Environ. Sci. Pollut. Res. 25, 13823-13832 (2018).
[5] J. Yang, M. Takaoka, A. Sano, A. Matsuyama, R. Yanase, Vertical distribution of total mercury and mercury methylation in a landfill site in Japan. Int. J. Environ. Res. Public Health 15 (6), 1252 (2018).
[6] K . Gogola, T. Rogala, M. Magdziarczyk, A. Smolinski, The mechanisms of endogenous fires occurring in extractive waste dumping facilities, Sustainability 12, 2856 (2020). DOI: https://doi.org/10.3390/su12072856
[7] D . Raj, A. Chowdhury, S.K. Maiti, Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess. 23, 767-787 (2017).
[8] R . Fernández-Martínez, J.M. Esbrí, P. Higueras, I. Rucandio, Comparison of mercury distribution and mobility in soils affected by anthropogenic pollution around chloralkali plants and ancient mining sites. Sci. Total Environ. 671, 1066-1076 (2019).
[9] A. González-Martínez, M. de Simón-Martín, R. López, R. Táboas-Fernández, A. Bernardo-Sánchez, Remediation of potential toxic elements from wastes and soils: analysis and energy prospects. Sustainability 11, 3307 (2019). DOI: https://doi.org/10.3390/su11123307
[10] U nited Nations Environment Programme, 2013. Global Mercury Assessment, Sources, emissions, releases and environmental transport. Accessed: January 6, 2016 at: http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf.
[11] N . Howaniec, A. Smolinski, Biowaste utilization in the process of co-gasification with bituminous coal and lignite. Energy 118, 18-23 (2017).
[12] P. Krawczyk, N. Howaniec, A. Smolinski, Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 114, 1207-1213 (2016).
[13] A. Smolinski, N. Howaniec, Analysis of porous structure parameters of biomass chars versus bituminous coal and lignite carbonized at high pressure and temperature – chemometric study. Energies 10, 1457 (2017). DOI: https://doi.org/10.3390/en10101457
[14] J. Zdeb, N. Howaniec, A. Smolinski, Utilization of carbon dioxide in coal gasification – an experimental study. Energies 12, 140 (2019). DOI: https://doi.org/10.3390/en12010140
[15] M. Sexauer, M. Gustin, M. Coolbaugh, B. Engle, R. Fitzgerald, S. Keislar, D. Lindberg, J. Nacht, J. Quashnick, C. Rytuba, H. Sladek, R. Zhang, R. Zehner, Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ. Geol. 43, 339-351 (2003).
[16] F. Steenhuisen, S.J. Wilson, Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmosph. Environ. 211, 138-150 (2019).
[17] A. Michalska, B. Bialecka, A. Bauerek, The hazard of mercury contamination of the environment resulting from the disposal of mining waste. Science and technologies in geology, exploration and mining, Conference Proceedings 3, (2015). ISBN 978-619-7105-33-9 / ISSN 1314-2704. DOI: https://doi.org/10.5593/sgem2015B13
[18] T . Antoszczyszyn, A. Michalska, The potential risk of environmental contamination by mercury contained in coal mining waste. Journal of Sustainable Mining 15, 191-196 (2017).
[19] P. Rompalski, A. Smolinski, H. Krzton, J. Gazdowicz, N. Howaniec, L. Róg, Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arab. J. Chem. 12 (8), 3927-3942 (2019).
[20] B.G. Miller, Clean Coal Engineering Technology, Butterworth-Heinemann (2017). ISBN 978-0-12-811365-3.
[21] X. Bai, W. Li, Y. Wang, H. Ding, The distribution and occurrence of mercury in Chinese coals. Int. J. Coal Sci. Technol. 4, 172-182 (2017).
[22] G . Ozbayoglu, Removal of hazardous air pollutants based on commercial coal preparation data. Physicochem. Probl. Miner Process. 49 (2), 621-629 (2013).
[23] H .N. Dougherty, A.P. Schissler, SME Mining Reference Handbook, second ed. Society for Mining, Metallurgy & Exploration (2020). ISBN 978-0-87335-435-6.
[24] J.E. Gray, P.M. Theodorakos, D.L. Fey, D.P. Krabbenhoft, Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA, Environ. Geochem. Health 37, 35-48 (2015).
[25] T .B. Das, S.K. Pal, T. Gouricharan, K.K. Sharma, A. Choudhury, Evaluation of reduction potential of selected heavy metals from Indian coal by conventional coal cleaning. Int. J. Coal Prep. Util. 33, 300-312 (2013).
[26] T . Dziok, A. Strugala, A. Rozwadowski, M. Macherzynski, S. Ziomber, Mercury in the waste coming from hard coal processing. Gospodarka Surowcami Mineralnymi 31 (1), 107-122 (2015).
[27] B. Klojzy-Karczmarczyk, J. Mazurek, Mercury in soils surrounded by selected dumps of coal mining waste. Energy Policy 13 (2), 245-252 (2010).
[28] B. Klojzy-Karczmarczyk, J. Mazurek, Soil contamination with mercury compounds within the range of a conventional coal-fired power plant. Energy Policy 10 (2), 593-601 (2007).
[29] Ministry of Environment. Regulation of the Minister of the Environment of September 9, 2002 on soil quality standards and land quality standards. Journal of Laws 165, 2002, item 1359.
[30] Mining Waste Act. Mining Waste Act (Journal of Laws No. 138 of 2008, 2008, item 865).
[31] Waste Act, 2016. The Waste Act. Journal of Laws of 2016, 2016, item 1987.