Details

Title

Computed Tomography and Scanning Electron Microscopy Analysis of a Friction Stir Welded Al-Cu Joint

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 4

Affiliation

Depczyński, Wojciech P. : Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland ; Bańkowski, Damian : Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland ; Młynarczyk, Piotr S. : Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Authors

Keywords

friction stir welding ; Non-destructive testing ; Radiographic inspection ; Computed tomography

Divisions of PAS

Nauki Techniczne

Coverage

65-71

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  

Date

2023.12.11

Type

Article

Identifier

DOI: 10.24425/afe.2023.146680
×