Details

Title

Developing Geometry Based Criterion Function Method for Predicting Porosity in LM6 Castings

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 2

Authors

Affiliation

Sata, A. : Marwadi University, India ; Maheta, N. : Marwadi University, India ; Khandelwal, H. : Department of Foundry Technology, National Institute of Advanced Manufacturing Technology, Ranchi, India ; Gautam, S.K. : Department of Foundry Technology, National Institute of Advanced Manufacturing Technology, Ranchi, India

Keywords

Criterion function ; Aluminium alloy-LM6 ; Shrinkage porosity ; Sand casting ; Geometric Variation

Divisions of PAS

Nauki Techniczne

Coverage

102-111

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Ramesh, S., Gautam, S.K., Roy, H., Lohar, A.K., Samanta, S.K,, Anand, A., Mukherjee, D. & Kumar, S. (2024). Structure property correlation of gravity die-cast and rheocast Al–Mg–Sc–Zr in situ Nano-TiB2 composite. International Journal of Metalcasting. 18(4), 3095-103. https://doi.org/10.1007/s40962-023-01223-2.
  • Khandelwal, H., Gautam, S.K., Ayar, V.S., Upadhyaya, R. & Kumar, A. (2024). Surface modified reinforcements on the structure properties of A356/SiC stir cast composite. Silicon. 26, 6269-6276. https://doi.org/10.1007/s12633-024-03160-z.
  • Gautam, S.K., Roy, H., Chandrakanth, B., Lohar, A.K. & Samanta, S.K. (2024). Effect of processing parameters of rheocast on mechanical properties of Al–10.5 Si–1.7 Cu alloy. International Journal of Metalcasting. 18(1), 390-402. https://doi.org/10.1007/s40962-023-01028-3.
  • Samuel, A.M., Doty, H.W., Valtierra, S. & Samuel, F.H. (2017). Porosity formation in Al–Si sand mold castings. International Journal of Metalcasting. 11, 812-822. https://doi.org/10.1007/s40962-016-0129-0.
  • Tiedje, N.S., Taylor, J.A. & Easton, M.A. (2012). Feeding and distribution of porosity in cast Al-Si alloys as function of alloy composition and modification. Metallurgical and Materials Transactions A. 43, 4846-4858. https://doi.org/10.1007/s11661-012-1308-0.
  • Mohammed, V.M., Arkanti, K. & Ferhathullah, H. (2016). Optimization of sand mould type and melting parameters to reduce porosity in Al-Si alloy castings. Leonardo Electronic Journal of Practices and Technologies. 28, 93-106. ISSN 1583-1078.
  • Zhao, P., Dong, Z., Zhang, J., Zhang, Y., Cao, M., Zhu, Z., Zhou, H. & Fu, J. (2020). Optimization of injection‐molding process parameters for weight control: converting optimization problem to classification problem. Advances in Polymer Technology. 1, 7654249, 1-9. https://doi.org/10.1155/2020/7654249.
  • Cao, L., Liao, D., Sun, F., Chen, T., Teng, Z. & Tang, Y. (2018). Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. The International Journal of Advanced Manufacturing Technology. 94, 807-815. https://doi.org/10.1007/s00170-017-0926-5.
  • Shafyei, A., Anijdan, S.M. & Bahrami, A. (2006). Prediction of porosity percent in Al–Si casting alloys using ANN. Materials Science and Engineering: A. 431(1-2), 206-210. https://doi.org/10.1016/j.msea.2006.05.150.
  • Rathod, H., Dhulia, J.K. & Maniar, N.P. (2017). Prediction of shrinkage porosity defect in sand casting process of LM25. InIOP Conference Series: Materials Science and Engineering. 225(1), 012237. DOI:10.1088/1757-899X/225/1/012237
  • Gautam, S.K., Roy, H., Lohar, A.K. & Samanta, S.K. (2023). Studies on mold filling behavior of Al–10.5 Si–1.7 Cu Al alloy during rheo pressure die casting system. International Journal of Metalcasting. 17(4), 2868-2877. https://doi.org/10.1007/s40962-023-00958-2.
  • Khandelwal, H., Gautam, S.K. & Ravi, B. (2024). Numerical simulation and experimental validation of fluidity of AlSi12CuNiMg alloy using multi spiral channel with varying thickness. International Journal of Metalcasting. 19, 1202-1211. https://doi.org/10.1007/s40962-024-01383-9.
  • Chudasama, B.J. (2013). Solidification analysis and optimization using pro-cast. International Journal of Research in Modern Engineering and Emerging Technology. 1(4), 9-19. ISSN: 2320-6586.
  • Ayar, M.S., Ayar, V.S. & George, P.M. (2020). Simulation and experimental validation for defect reduction in geometry varied aluminium plates casted using sand casting. Materials Today: Proceedings. 27(4), 1422-1430. https://doi.org/10.1016/j.matpr.2020.02.788.
  • Hirata, N. & Anzai, K. (2017). Numerical simulation of shrinkage formation behavior with consideration of solidification progress during mold filling using stabilized particle method. Materials Transactions. 58(6), 932-939. https://doi.org/10.2320/matertrans.F-M2017811.
  • Bekele, B.T., Bhaskaran, J., Tolcha, S.D. & Gelaw, M. (2022). Simulation and experimental analysis of re-design the faulty position of the riser to minimize shrinkage porosity defect in sand cast sprocket gear. Materials Today: Proceedings. 1(59), 598-604. https://doi.org/10.1016/j.matpr.2021.12.090.
  • Choudhari, C.M., Narkhede, B.E. & Mahajan, S.K. (2014). Casting design and simulation of cover plate using AutoCAST-X software for defect minimization with experimental validation. Procedia Materials Science. 6, 786-797. https://doi.org/10.1016/j.mspro.2014.07.095.
  • Kimio, K. & Pehlke, R.D. (1985). Mathematical modeling of porosity formation in solidification. Metallurgical Transactions. B16, 359-366. https://doi.org/10.1007/BF02679728.
  • Chen, Yin-Heng, & Yong-Taek Im, (1990). Analysis of solidification in sand and permanent mold castings and shrinkage prediction. International Journal of Machine Tools and Manufacture. 30(2), 175-189. https://doi.org/10.1016/0890-6955(90)90128-6.
  • Sabau, A.S. & Viswanathan, S. (2002). Microporosity prediction in aluminum alloy castings. Metallurgical and Materials Transactions. B33 (2), 243-255. https://doi.org/10.1007/s11663-002-0009-2.
  • Pequet, Ch., Rappaz, M. & Gremaud, M. (2002). Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: applications to aluminum alloys. Metallurgical and Materials Transactions. A33(7), 2095-2106. https://doi.org/10.1007/s11661-002-0041-5.
  • Dawei, S. & Garimella, S.V. (2006). Numerical and experimental investigation of solidification shrinkage. Numerical Heat Transfer, Part A: Applications. 52(2), 145-162. https://doi.org/10.1080/10407780601115079.
  • De Obaldia, E. Escobar, & Felicelli, S.D. (2007). Quantitative prediction of microporosity in aluminum alloys. Journal of Materials Processing Technology. 191(1-3), 265-269. https://doi.org/10.1016/j.jmatprotec.2007.03.072.
  • Reis, A., Houbaert, Y., Zhian Xu, Van Tol, R., Santos, A.D., Duarte, J.F. & Magalhaes, A.B. (2013). Modeling of shrinkage defects during solidification of long and short freezing materials. Journal of Materials Processing Technology. 202(1-3), 428-434. https://doi.org/10.1016/j.jmatprotec.2007.10.030.
  • Mazloum, K., & Sata, A. (2024). Development of geometry-driven quantitative prediction for shrinkage porosity in T-junction of steel sand castings. Turkish Journal of Engineering. 8(4), 640-646. https://doi.org/10.31127/tuje.1454237.
  • Sata, A. & Dharaiya, V. (2022). Geometry-driven criterion function for predicting shrinkage porosity in stainless steel castings with T-junction. Journal of Advanced Manufacturing Systems. 21(03), 625-38. https://doi.org/10.1142/S0219686722500226.
  • Sata, A., Maheta, N., Dave, A. & Khandelwal, H. (2025). Geometry based and simulation supported porosity prediction in ductile iron casting. Engineering Research Express. 7, 015411, 1-12. DOI: 10.1088/2631-8695/ada71e
  • Kamalesh, S., Pavan, R., Durgesh, J., Karupppasamy, S. Ravi, B. (2008). 3D junctions in castings: simulation-based DFM analysis and guidelines. In INAE International Conference on Advances in Manufacturing Technology (ICAMT 2008), 6-8 February 2008.

Date

24.06.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153802
×