Nauki Techniczne

Archives of Foundry Engineering

Zawartość

Archives of Foundry Engineering | 2025 | vol. 25 | No 2

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Mold filling and casting solidification are determined by gravity driven natural convection. Also forced convection induced by rotating magnetic field influences castings microstructure. The investigations of flow effect on the aluminum casting alloys and silicon rich alloys were mainly conducted on simple cylindrical specimens and focused on the microstructure, composition and strength of electromagnetic field. Unfortunately, the temperature field in the specimens and facility were mainly omitted or not enough discussed. In the current study thermal conditions in a special facility for flow effect investigation were studied, in experimental and numerical manner, concerning Al-Si-Mg alloys with various compositions and different solid fraction curves. Solidification simulation has proven slow cooling and uniform temperature on the cross-section of the specimen and crucible, nearly uniform solidification time throughout the whole specimen, wide mushy zone and proper construction of the facility protecting electric coils. Temperature gradient and cooling rate, for alloys where almost all solid fraction and latent heat released close to solidus, were significantly higher at the solidus temperature than by liquidus, whilst in alloys where latent heat released evenly and closer to liquidus, were smoothly changing across sample and from liquidus to solidus temperature. Numerically simulated microstructure parameters like e.g. SDAS, grain size and fraction of primary phase in α-Al first alloy presented values similar and smoothly changing across specimen. It was proposed to calculate secondary dendrite arm spacing SDAS based on the specified time period, that could be responsible for melting some arms or creating new arms by dendrites, and next careful SDAS measurement across specimen was recommended. Tested facility and experimental procedure, developed for studying flow effect on the Al alloys microstructure, was proven to be very resistant to interference.
Przejdź do artykułu

Bibliografia

  1. Shwe, W.H.A., Kay, T.L. & Waing, K.K.O. (2008). The effect of ageing treatment of aluminum alloys for fuselage structure-light aircraft. World Academy of Science, Engineering and Technology. International Journal of Materials and Metallurgical Engineering. 2(10), 46, 696-699.
  2. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J. & de Smet, P. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering. A 280, 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
  3. The Aluminum Association, Inc. (1998). Aluminum alloy selection and applications. A monograph of Aluminum Association Incorporation, Washington, D C.
  4. Cubberly, W.H. (1979). Properties and selection: non-ferrous alloys and pure metals. Metals Handbook (Metals Park, OH: American Society for Metals).
  5. Smith, W.F. (1993). Alluminum alloys. In B.J. Clark and Jack Maisel (Eds.), Structure and properties of engineering alloys (pp. 176-242). United States of America: McGraw-Hill Series.
  6. Mondolfo, L.F. (1976). Aluminium Alloys: Structure and Properties. London, UK: Butterworths & Co.
  7. Sarafoglou, P., I., Aristeidakis, J.S., Tzini, M-I. T. & Haidemenopoulos, G.N. (2016). Metallographic Index‐Based quantification of the homogenization state in extrudable aluminum alloys. Metals. 6(5), 121. doi: 10.3390/met6050121.
  8. Stefanescu, D. (1988). The New Metals Hand Book: Casting, ASM International.
  9. Eskin, D.G. & Katgerman, L. (2009). Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges. Materials Technology: Advanced Performance Materials. 24(3), 152-156. DOI: 1179/106678509X12489478523537.
  10. Zhang, H.Nagaumi H. & Cui, J.Z. (2012). Effects of low frequency electromagnetic field of multi-physical fields during DC casting of 7xxx aluminum alloys. Advanced Science Letters. 13(1), 306-311(6). https://doi.org/10.1166/asl.2012.3762.
  11. Bojarevičs, A., Kaldre, I., Milgrāvis, M., Beinerts, T. (2017). Direct chill casting of aluminium alloys under electromagnetic. interaction. In VIII International Scientific Colloquium "Modelling for Materials Processing", 21-22 September 2017 (pp. 259-262). Riga. DOI: 10.22364/mmp2017.42.
  12. Zaïdat, K., Mangelinck-Noël, N., Moreau, R. (2007). Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys. Comptes Rendus Mecanique. 335, 330-335. DOI: 10.1016/j.crme.2007.05.010.
  13. Patarić, A., Mihailović, M., Marković, M., Sokić, M., Radovanović, A. & Jordović, B. (2021). Microstructure as an essential aspect of EN AW 7075 aluminum alloy quality influenced by electromagnetic field during continuous casting process. Hemijska industrija. 75(1), 31-37. https://doi.org/10.2298/HEMIND201214006P.
  14. Kaldre, I., Milgravis, M., Bojarevics, A. & Beinerts, T. (2021). Electromagnetic processing during directional solidification of particle-strengthened aluminum alloys for additive manufacturing. Materials Proceedings. 3(1), 19, 1-4. https://doi.org/10.3390/IEC2M-09255.
  15. Patarić, A., Mihailovic, M. & Gulisija, Z. (2012). Quantitative metallographic assessment of the electromagnetic casting influence on the microstructure of 7075 Al alloy. Journal of Materials Science. 47, 793-796. DOI 10.1007/s10853-011-5855-3.
  16. Wang, X.J., Zhao, Z.H., Zuo, Y.B., Zhu, Q.F., Qu, F. & Cui, J.Z. (2009). Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting. Materials Science and Technology. 25(10), 1207-1210. https://doi.org/10.1179/174328408X382172.
  17. Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda J., Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170, 1-14. https://doi.org/10.1016/j.jmatprotec.2021.117170.
  18. Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. The Journal of The Minerals, Metals & Materials Society. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
  19. Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. 8(5), 332, 1-24. https://doi.org/10.3390/met8050332.
  20. Haga, T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of materials processing technology. 118(1-3), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
  21. Eslami, M., Payandeh, M., Deflorian, F., Jarfors, A.E.W. & Zanella, C. (2018). Effect of segregation and surface condition on corrosion of rheo-HPDC Al–Si alloys. Metals. 8(4), 209, 1-18. https://doi.org/10.3390/met8040209.
  22. Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8(5), 316, 1-16. https://doi.org/10.3390/met8050316.
  23. Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
  24. Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26(6), 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
  25. Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society (TMS). 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
  26. Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
  27. Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-24. https://doi.org/10.3390/met11111804.
  28. Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si–Fe alloys under an electromagnetic field. Materials. 16(9), 3304. https://doi.org/10.3390/ma16093304.
  29. Mikolajczak, P. (2023). Morphology and distribution of α-Al and Mn-rich phases in Al-Si-Mn alloys under an electromagnetic stirring. Archives of Foundry Engineering. 23(3), 74-87. DOI: 24425/afe.2023.146665.
  30. Mikolajczak, P. (2023). Flow effect on Si crystals and Mn-phases in hypereutectic and eutectic Al-Si-Mn alloys. Archives of Foundry Engineering. 23(4), 72-86. DOI: 24425/afe.2023.146681.
  31. Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L., Lu, Y.P., Wang, T.M. & Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
  32. Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Effect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/10.1016/j.jcrysgro.2014.07.035.
  33. Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/j.jcrysgro.2015.08.001.
  34. Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012.
  35. Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science in Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/j.mssp.2018.03.006.
  36. Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45(7), 967-971. https://doi.org/10.2355/isijinternational.45.967.
  37. Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/j.mssp.2019.04.015.
  38. He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333, 1-11, 1-11. https://doi.org/10.1016/j.mssp.2020.105333.
  39. Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10, 1-14. DOI: 10.3390/ma12010010.
  40. Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
  41. Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13(4), 284-288. https://doi.org/10.1007/s41230-016-6036-4.
  42. Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10(9), 1129, 1-13. https://doi.org/10.3390/met10091129.
  43. Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10(1), 155, 1-11. https://doi.org/10.3390/met10010155.
  44. Ren, Z. & Junze, J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
  45. Mikołajczak, P., Janiszewski, J., & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Advances in Manufacturing II: Volume 4-Mechanical Engineering (pp. 164-175). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-16943-5_15.
  46. Thermo-Calc 4.1—Software (2024) Package from Thermo-Calc Software AB. Retrieved June 10, 2023, from www.thermocalc.se.
  47. MAGMA (2024). Gießereitechnologie GmbH. Kackertstr. 16-18. Retrieved June 5, 2024, from www.magmasoft.de.
  48. Gustafsson, G., Thorvaldsson, T. & Dunlop, G.L. (1986). The influence of Fe and Cr on the microstructure of cast. Al-Si-Mg alloys. Metallurgical Transactions A. 17, 45-52. https://doi.org/10.1007/BF02644441.
  49. Prakash S.P., Om P. & Devendra K. (2020). Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Advances. 10(61), 37327-37345. http://dx.doi.org/10.1039/ D0RA02744H.
  50. Yan, F. (2013). Development of high strength Al-Mg2Si-Mg based alloy for high pressure diecasting process. PhD thesis. Brunel University Uxbridge, UB8 3PH United Kingdom.
  51. Hunt, J.D. (2001). Pattern formation in solidification. Science and Technology of Advanced Materials. 2(1), 147-155. https://doi.org/10.1016/S1468-6996(01)00040-7.
  52. Hunt, J.D. & Lu, S.Z. (1996) Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions. Metallurgical and Materials Transactions 27, 611-623. https://doi.org/10.1007/BF02648950.
  53. Stefanescu, D. (2009). Science and engineering of casting solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
  54. Kattamis, T.Z. & Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
  55. Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
  56. Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28(4), 651-663. https://doi.org/10.1007/s11663-997-0039-x.
  57. Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
  58. Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 1991, 22, 569-574. https://doi.org/10.1007/BF02656824.
  59. Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics. Metallurgical and Materials Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
  60. Ferreira, A.F., Castro, J.A. & Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

P. Mikolajczak
1
ORCID: ORCID

  1. Poznan University of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aluminium industry is one of the most energy-intensive industrial fields and is associated with severe environmental impact mainly due to GHG emissions. Aluminium recycling is one of the best ways to eliminate this impact and to achieve better economic viability of aluminium production. Piece size and contamination of aluminium scrap are two of the most important factors that affect recyclability of aluminium and its alloys. Scrap with large piece size is relatively easy to recycle because it is associated with lower metal loss and fewer undesired inclusions introduced into the molten metal during remelting. Unfortunately, a large portion of scrap generated by industrial sector and by end-users is of small piece size. Despite its high importance, recycling of these types of scrap is often overlooked by contemporary literature. The aim of this work is to describe melting behaviour of high-density aluminium briquette prepared from thin aluminium foils and to provide metallographic observation of inclusions introduced into the molten metal during melting of the briquette. Melting is performed in laboratory conditions. The inclusions are analysed using optical microscopy in combination with SEM and EDX analysis. The results indicates that despite fast immersion of aluminium briquette, high portion of oxide films were introduced into the melt. Carbide like particles were also observed in microstructure, probably as a result of burning of organic contamination of the briquette. However, melting process in real industrial conditions differs from laboratory experiment which is a topic for further study.
Przejdź do artykułu

Bibliografia

  1. Raabe, D., Ponge, D., Uggowitzer, P.J., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., de Geuser, F., Deschamps, A., Hutchinson., C., Liu, C., Lim Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S., Sinclair, C. & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in materials science. 128, 100947, 1-150. https://doi.org/10.1016/j.pmatsci.2022.100947.
  2. Brough, D. & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids. 1, 100007, 1-39. https://doi.org/10.1016/j.ijft.2019.100007.
  3. Green, J.A. (2007). Aluminum recycling and processing for energy conservation and sustainability. ASM International.
  4. Vallejo-Olivares, A., Philipson, H., Gökelma, M., Roven, H. J., Furu, T., Kvithyld, A. & Tranell, G. (2021). Compaction of aluminium foil and its effect on oxidation and recycling yield. In Light Metals 2021: 50th Anniversary Edition (pp. 735-741). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-65396-5_96.
  5. Gaustad, G., Olivetti, E. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation and Recycling. 58, 79-87. https://doi.org/10.1016/j.resconrec.2011.10.010.
  6. Padamata, S.K., Yasinskiy, A. & Polyakov, P. (2021). A review of secondary aluminum production and its byproducts. The journal of the Minerals, Metals and Materials Society. 73(9), 2603-2614. https://doi.org/10.1007/s11837-021-04802-y.
  7. Niero, M. & Olsen, S. I. (2016). Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling. 114, 18-31. https://doi.org/10.1016/j.resconrec.2016.06.023.
  8. Windmark, C., Lattanzi, L., Månberger, A. & Jarfors, A.E. (2022). Investigation on resource-efficient aluminium recycling–a state of the art review. SPS2022. 15-27.
  9. Xiao, Y., Reuter, M., Vonk, P., Vonken, J., Orbon, H., Probst, T. & Boin, U. (2000). Experimental study on aluminium scrap recycling. In Stewart Jr., DL, Daley, JC and Stephens (Eds.), Proceedings of the Fourth International Symposium on Recycling of Metals and Engineered Materials. Eds., (pp. 22-25).
  10. Xiao, Y., Reuter, M. A. & Boin, U.D.O. (2005). Aluminium recycling and environmental issues of salt slag treatment. Journal of Environmental Science and Health. 40(10), 1861-1875. https://doi.org/10.1080/10934520500183824.
  11. Yang, Y., Xiao, Y., Zhou, B. & Reuter, M.A. (2005). Aluminium recycling: scrap melting and process simulation. Sustainable developments in metals processing, 251-264.
  12. Engelen, B., De Marelle, D., Diaz-Romero, D.J., Van den Eynde, S., Zaplana, I., Peeters, J.R. & Kellens, K. (2022). Techno-economic assessment of robotic sorting of aluminium scrap. Procedia CIRP. 105, 152-157. https://doi.org/10.1016/j.procir.2022.02.026.
  13. Mashhadi, H.A., Moloodi, A., Golestanipour, M. & Karimi, E.Z.V. (2009). Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux. Journal of Materials Processing Technology. 209(7), 3138-3142. https://doi.org/10.1016/j.jmatprotec.2008.07.020.
  14. Puga, H., Barbosa, J., Soares, D., Silva, F. & Ribeiro, S. (2009). Recycling of aluminium swarf by direct incorporation in aluminium melts. Journal of Materials Processing Technology. 209(11), 5195-5203. https://doi.org/10.1016/j.jmatprotec.2009.03.007.
  15. Xiao, Y. & Reuter, M.A. (2002). Recycling of distributed aluminium turning scrap. Minerals engineering. 15(11), 963-970. https://doi.org/10.1016/S0892-6875(02)00137-1.
  16. Babailov, N.A., Loginov, Y.N., Polyanskii, L.I. & Pervukhina, D.N. (2018). Roll briquetting for recycling of aluminum wire. 62, 717-722. https://doi.org/10.1007/s11015-018-0713-z.
  17. Borge, G., Cooper, P.S. & Thistlethwaite, S.R. (2000). Review of dissolution testing and alloying methods in the casthouse. Continuous Casting. 33-39. https://doi.org/10.1002/3527607331.ch5.
  18. Majer, M. & Machac, J. (2019). Review of aluminum chips recycling. International Multidisciplinary Scientific GeoConference: SGEM. 19(4.1), 771-778. DOI: 10.5593/sgem2019/4.1/S18.098.
  19. Zagirov, N.N., Loginov, Y.N., Ivanov, E.V. & Galiev, R.I. (2022). Approval of a method for processing aluminum alloy waste cans using a combined rolling and pressing method. Metallurgist. 66(3), 343-348. https://doi.org/10.1007/s11015-022-01334-x.
  20. Assael, M.J., Kakosimos, K., Banish, R.M., Brillo, J., Egry, I., Brooks, R., Quested, P.N., mills, K.C., Nagashima, A., Sato, Y. & Wakeham, W.A. (2006). Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal Of Physical And Chemical Reference Data. 35(1), 285-300. https://doi.org/10.1063/1.2149380.
  21. Palimąka, P. (2020). Thermal cleaning and melting of fine aluminium alloy chips. Archives of Foundry Engineering. 20(4), 91-96. DOI: 10.24425/afe.2020.133353.
  22. Vallejo-Olivares, A., Gertjegerdes, T., Høgåsen, S., Friedrich, B. & Tranell, G. (2023). Effects of compaction and thermal pre-treatments on generation of dross and off-gases in aluminium recycling. Journal of Sustainable Metallurgy. 10, 69-82. https://doi.org/10.1007/s40831-023-00773-3.

 

  1.  
Przejdź do artykułu

Autorzy i Afiliacje

L. Pavlasek
1 2
ORCID: ORCID
M. Bernatik
2
T. Cervenakova
2
J. Trojan
2

  1. VSB – Technical University of Ostrava, Faculty of Material Science and Technology, Czech Republic
  2. AL INVEST Břidličná, a. s., Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

One of the major issues in the metal casting process that affects productivity and energy efficiency is porosity, especially when it comes to castings that are not made in accordance with Original Equipment Manufacturers (OEMs) specifications. Predictive method is crucial to solving this problem. Criterion function is a noteworthy empirical model that has been extensively studied in the literature. By taking into account important factors like cooling rate, thermal gradient and molten metal velocity during solidification, it provides predictive insights into the location and presence of porosity.
It is essential to develop a criterion function that considers the impact of geometric variation on the occurrence of shrinkage porosity. In this paper, a geometry-based model has been proposed for LM6 castings using a standard shape with three T-joints for the prediction of shrinkage porosity. The findings suggest that the presence of joints significantly influences the formation of porosity and it was also observed that an increase in the length ratio leads to a higher occurrence of shrinkage porosity. This information is vital for designers as it guides them to maintain the length ratio within a defined range to prevent shrinkage porosity in T-junction castings.

Przejdź do artykułu

Bibliografia

  • Ramesh, S., Gautam, S.K., Roy, H., Lohar, A.K., Samanta, S.K,, Anand, A., Mukherjee, D. & Kumar, S. (2024). Structure property correlation of gravity die-cast and rheocast Al–Mg–Sc–Zr in situ Nano-TiB2 composite. International Journal of Metalcasting. 18(4), 3095-103. https://doi.org/10.1007/s40962-023-01223-2.
  • Khandelwal, H., Gautam, S.K., Ayar, V.S., Upadhyaya, R. & Kumar, A. (2024). Surface modified reinforcements on the structure properties of A356/SiC stir cast composite. Silicon. 26, 6269-6276. https://doi.org/10.1007/s12633-024-03160-z.
  • Gautam, S.K., Roy, H., Chandrakanth, B., Lohar, A.K. & Samanta, S.K. (2024). Effect of processing parameters of rheocast on mechanical properties of Al–10.5 Si–1.7 Cu alloy. International Journal of Metalcasting. 18(1), 390-402. https://doi.org/10.1007/s40962-023-01028-3.
  • Samuel, A.M., Doty, H.W., Valtierra, S. & Samuel, F.H. (2017). Porosity formation in Al–Si sand mold castings. International Journal of Metalcasting. 11, 812-822. https://doi.org/10.1007/s40962-016-0129-0.
  • Tiedje, N.S., Taylor, J.A. & Easton, M.A. (2012). Feeding and distribution of porosity in cast Al-Si alloys as function of alloy composition and modification. Metallurgical and Materials Transactions A. 43, 4846-4858. https://doi.org/10.1007/s11661-012-1308-0.
  • Mohammed, V.M., Arkanti, K. & Ferhathullah, H. (2016). Optimization of sand mould type and melting parameters to reduce porosity in Al-Si alloy castings. Leonardo Electronic Journal of Practices and Technologies. 28, 93-106. ISSN 1583-1078.
  • Zhao, P., Dong, Z., Zhang, J., Zhang, Y., Cao, M., Zhu, Z., Zhou, H. & Fu, J. (2020). Optimization of injection‐molding process parameters for weight control: converting optimization problem to classification problem. Advances in Polymer Technology. 1, 7654249, 1-9. https://doi.org/10.1155/2020/7654249.
  • Cao, L., Liao, D., Sun, F., Chen, T., Teng, Z. & Tang, Y. (2018). Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. The International Journal of Advanced Manufacturing Technology. 94, 807-815. https://doi.org/10.1007/s00170-017-0926-5.
  • Shafyei, A., Anijdan, S.M. & Bahrami, A. (2006). Prediction of porosity percent in Al–Si casting alloys using ANN. Materials Science and Engineering: A. 431(1-2), 206-210. https://doi.org/10.1016/j.msea.2006.05.150.
  • Rathod, H., Dhulia, J.K. & Maniar, N.P. (2017). Prediction of shrinkage porosity defect in sand casting process of LM25. InIOP Conference Series: Materials Science and Engineering. 225(1), 012237. DOI:10.1088/1757-899X/225/1/012237
  • Gautam, S.K., Roy, H., Lohar, A.K. & Samanta, S.K. (2023). Studies on mold filling behavior of Al–10.5 Si–1.7 Cu Al alloy during rheo pressure die casting system. International Journal of Metalcasting. 17(4), 2868-2877. https://doi.org/10.1007/s40962-023-00958-2.
  • Khandelwal, H., Gautam, S.K. & Ravi, B. (2024). Numerical simulation and experimental validation of fluidity of AlSi12CuNiMg alloy using multi spiral channel with varying thickness. International Journal of Metalcasting. 19, 1202-1211. https://doi.org/10.1007/s40962-024-01383-9.
  • Chudasama, B.J. (2013). Solidification analysis and optimization using pro-cast. International Journal of Research in Modern Engineering and Emerging Technology. 1(4), 9-19. ISSN: 2320-6586.
  • Ayar, M.S., Ayar, V.S. & George, P.M. (2020). Simulation and experimental validation for defect reduction in geometry varied aluminium plates casted using sand casting. Materials Today: Proceedings. 27(4), 1422-1430. https://doi.org/10.1016/j.matpr.2020.02.788.
  • Hirata, N. & Anzai, K. (2017). Numerical simulation of shrinkage formation behavior with consideration of solidification progress during mold filling using stabilized particle method. Materials Transactions. 58(6), 932-939. https://doi.org/10.2320/matertrans.F-M2017811.
  • Bekele, B.T., Bhaskaran, J., Tolcha, S.D. & Gelaw, M. (2022). Simulation and experimental analysis of re-design the faulty position of the riser to minimize shrinkage porosity defect in sand cast sprocket gear. Materials Today: Proceedings. 1(59), 598-604. https://doi.org/10.1016/j.matpr.2021.12.090.
  • Choudhari, C.M., Narkhede, B.E. & Mahajan, S.K. (2014). Casting design and simulation of cover plate using AutoCAST-X software for defect minimization with experimental validation. Procedia Materials Science. 6, 786-797. https://doi.org/10.1016/j.mspro.2014.07.095.
  • Kimio, K. & Pehlke, R.D. (1985). Mathematical modeling of porosity formation in solidification. Metallurgical Transactions. B16, 359-366. https://doi.org/10.1007/BF02679728.
  • Chen, Yin-Heng, & Yong-Taek Im, (1990). Analysis of solidification in sand and permanent mold castings and shrinkage prediction. International Journal of Machine Tools and Manufacture. 30(2), 175-189. https://doi.org/10.1016/0890-6955(90)90128-6.
  • Sabau, A.S. & Viswanathan, S. (2002). Microporosity prediction in aluminum alloy castings. Metallurgical and Materials Transactions. B33 (2), 243-255. https://doi.org/10.1007/s11663-002-0009-2.
  • Pequet, Ch., Rappaz, M. & Gremaud, M. (2002). Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: applications to aluminum alloys. Metallurgical and Materials Transactions. A33(7), 2095-2106. https://doi.org/10.1007/s11661-002-0041-5.
  • Dawei, S. & Garimella, S.V. (2006). Numerical and experimental investigation of solidification shrinkage. Numerical Heat Transfer, Part A: Applications. 52(2), 145-162. https://doi.org/10.1080/10407780601115079.
  • De Obaldia, E. Escobar, & Felicelli, S.D. (2007). Quantitative prediction of microporosity in aluminum alloys. Journal of Materials Processing Technology. 191(1-3), 265-269. https://doi.org/10.1016/j.jmatprotec.2007.03.072.
  • Reis, A., Houbaert, Y., Zhian Xu, Van Tol, R., Santos, A.D., Duarte, J.F. & Magalhaes, A.B. (2013). Modeling of shrinkage defects during solidification of long and short freezing materials. Journal of Materials Processing Technology. 202(1-3), 428-434. https://doi.org/10.1016/j.jmatprotec.2007.10.030.
  • Mazloum, K., & Sata, A. (2024). Development of geometry-driven quantitative prediction for shrinkage porosity in T-junction of steel sand castings. Turkish Journal of Engineering. 8(4), 640-646. https://doi.org/10.31127/tuje.1454237.
  • Sata, A. & Dharaiya, V. (2022). Geometry-driven criterion function for predicting shrinkage porosity in stainless steel castings with T-junction. Journal of Advanced Manufacturing Systems. 21(03), 625-38. https://doi.org/10.1142/S0219686722500226.
  • Sata, A., Maheta, N., Dave, A. & Khandelwal, H. (2025). Geometry based and simulation supported porosity prediction in ductile iron casting. Engineering Research Express. 7, 015411, 1-12. DOI: 10.1088/2631-8695/ada71e
  • Kamalesh, S., Pavan, R., Durgesh, J., Karupppasamy, S. Ravi, B. (2008). 3D junctions in castings: simulation-based DFM analysis and guidelines. In INAE International Conference on Advances in Manufacturing Technology (ICAMT 2008), 6-8 February 2008.
Przejdź do artykułu

Autorzy i Afiliacje

A. Sata
1
ORCID: ORCID
N. Maheta
1
ORCID: ORCID
H. Khandelwal
2
ORCID: ORCID
S.K. Gautam
2

  1. Marwadi University, India
  2. Department of Foundry Technology, National Institute of Advanced Manufacturing Technology, Ranchi, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents research on evaluating the crystallization of Al-Si alloys with increased iron content and analysis of the associated phase transformations. This problem is significant with the growing importance of recycling aluminum alloys, which is justified economically and ecologically. The study concerns the cooling curves of EN AC-42000 alloy (EN AC-AlSi7Mg), into which iron (in the form of Al-Fe mortar - as a substitute for circulating scrap) was introduced with a content of 0.5 to 1.5wt.%. Analysis of crystallization by ATD and microstructure studies of eleven Al-Si-Mg alloys with varying iron content showed up to about 0.4 wt.% Fe, the iron phases formed do not significantly affect the microstructure. They enter into multiphase eutectics of the type α(Al)+(Mg2Si,Fe)+β(Si) or α(Al)+(AlXFeYSiZ)+β(Si), which crystallize after the formation of the double eutectic α(Al)+β(Si). In the range of about 0.5 to 0.9 wt.% Fe, there is a preneutic crystallization of iron phases, mainly the lamellar-neutectic β-Al5FeSi. At more than 1.0 wt.% Fe, the morphology of this phase becomes even more unfavorable (due to primary crystallization) and is accompanied by numerous clusters of shrinkage porosity.
Przejdź do artykułu

Bibliografia

  1. MacKenzie, S.D., Totten, G.E. (2005). Analytical characterization of aluminum, steel, and superalloys. (1st ed.). Boca Raton: Taylor and Francis Group.
  2. Xinjin, Cao, & Campbell, J. (2006). Morphology of β-Al5FeSi phase in Al-Si cast alloys. Materials Transaction. 47(5), 1303-1312. https://doi.org/10.2320/matertrans. 47.1303.
  3. Taylor, J.A. (2004). The effect of iron in Al-Si cast alloys. In 35th Australian Foundry Institute National Conference, 31 October - 3 November 2004 (pp. 148-157). Australia: Australian Foundry Institute.
  4. Ebhota, W.S. Tien-Chien, J. (2018). Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. In Mahmood Aliofkhazraei (Eds.), Intermetallic Compounds - Formation and Applications (pp. 21-38). London, United Kingdom: IntechOpen.
  5. Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004.
  6. Zavadska, D., Tillova, E., Svesova, I., Chalupova, M., Kucharikova, L. & Belan, J. (2019). The effect of iron content on microstructure and porosity of secondary AlSi7Mg0.3 alloy. Periodica Polytechnica Transportation Engineering. 47(4), 283-289. https://doi.org/10.3311/PPtr.12101.
  7. Orozco-Gonzales, P., Castro-Roman, M., Martinez, A.I., Herrero-Trejo, M., Lopez, A.A. & Quispe-Marcatoma, J. (2010). Precipitation of Fe-rich intermetallic phase in liquid Al-13.58Si-11.59Fe-1.19Mn alloy. 18(8), 1617-1622. https://doi.org/10.1016/j.intermet.2010.04.014.
  8. Belov, N.A., Aksenov, A.A. & Eskin, D.G. (2002). Iron in aluminum alloys. Impurity and Alloying Element (1st ed.). New York: Taylor & Francis Inc.
  9. Liu, G., Gong, M., Xie, D. & Wang, J. (2019). Structures and mechanical properties of Al-Al2Cu interfaces. The Journal of The Minerals, Metals & Materials Society. 71, 1200-1208. DOI: 10.1007/s11837-019-03333.
  10. Hurtalowa, L., Tillova, E. & Chalupova, M. (2012). Identification and analysis of intermetallic phases in age-hardened recycled AlSi9Cu3 alloy. Archive of Mechanical Engineering. LIX(4), 385-393. DOI: 10.2478/v10180-012-0020-3.
  11. Lu, L. & Dahle, A.K. (2005). Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys. Metallurgical and Mechanical Transactions. 36A, 819- https://doi.org/10.1007/s11661-005-1012-4.
  12. Xiao, F., Li, L., Zhou, R., Li, Y., Jiang, Y., Lu & D. (2018). Effect of melt treatment on Fe-rich phase in Al-25Si-2Fe-2Mn alloy. Advances in Materials Processing. 865-879. DOI: 10.1007/978-981-13-0107-0_85.
  13. Piątkowski, J. (2020). The crystallization of the AlSi9 alloy designed for the alfin processing of ring supports in engine pistons. Archives of Foundry Engineering. 20(2), 65-70. DOI 10.24425/afe.2020.131304.
Przejdź do artykułu

Autorzy i Afiliacje

T. Matuła
1
ORCID: ORCID
G. Siwiec
1
ORCID: ORCID
J. Piątkowski
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Materials Engineering, Krasińskiego 8, 40-019 Katowice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This study aimed to evaluate the hot tearing susceptibility (HTS) of the Al-0.9Mg-0.7Si aluminium casting alloy, with a particular focus on how cooling rates and thermal stresses during solidification influence this phenomenon. To capture these parameters, the experiment employed the constrained rod casting (CRC) technique, which facilitated the real-time measurement of both cooling and force curves. Hot tearing was analysed across various casting configurations, incorporating different feeding mechanisms to assess their effect on tear resistance. The fracture surfaces resulting from hot tearing were examined in detail using scanning electron microscopy (SEM), providing insight into the microstructural characteristics at the tear sites. The results revealed that the Al-0.9Mg-0.7Si alloy exhibits an HTS value of 12, indicating moderate susceptibility under the tested conditions. Furthermore, the alloy displayed an average cooling rate of 7.95 °C/s and an average maximum load of 233.01 N, underscoring the significant impact of thermal gradients and induced stress on crack formation. These findings enhance the understanding of the factors governing hot tearing in aluminium alloys, with potential implications for alloy design and process optimisation aimed at reducing defects in cast aluminium products.
Przejdź do artykułu

Bibliografia

  • Li, S., Sadayappan, K. & Apelian, D. (2011). Characterisation of hot tearing in Al cast alloys: methodology and procedures. International Journal of Cast Metals Research. 24(2), 88-95. https://doi.org/10.1179/1743133610Y.0000000004.
  • Zheng, K., Politis, D.J., Wang, L. & Lin, J. (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture. 1(2), 55-80. https://doi.org/10.1016/j.ijlmm.2018.03.006.
  • Iswanto, P.T., Akhyar & Maliwemu, E.U.K. (2019). Fatigue crack growth rate of motorcycle wheel fabricated by centrifugal casting. Metalurgija. 58(1-2), 51-54.
  • Iswanto, P.T., Akhyar & Pambekti, A. (2020). Heat treatment T4 and T6 effects on mechanical properties in Al-Cu alloy after remelt with different pouring temperatures. Metalurgija. 59(2), 171-174.
  • Kaufman, J.G. (2005). Aluminum alloys. In Myer Kutz (Eds.), Materials and Mechanical Design (pp. 59-116). https://doi.org/10.1002/0471777447.
  • Ndaliman, M.B. & Pius, A.P. (2007). Behavior of aluminum alloy castings under different pouring temperatures and speeds. Leonardo Electronic Journal of Practices and Technologies. 6(11), 71-80. ISSN (1583-1078).
  • Jahangiri, A., Marashi, S.P.H., Mohammadaliha, M. & Ashofte, V. (2017). The effect of pressure and pouring temperature on the porosity, microstructure, hardness, and yield stress of AA2024 aluminum alloy during the squeeze casting process. Journal of Materials Processing Technology. 245, 1-6. https://doi.org/10.1016/j.jmatprotec.2017.02.005.
  • Xiang, H., Liu, W., Wang, Q., Jiang, B., Song, J., Wu, H., Feng, N. & Chai, L. (2023). Improvement of hot tearing resistance of AZ91 alloy with the addition of trace Ca. Materials. 16(10), 3886, 1-16. https://doi.org/10.3390/ma16103886.
  • Švec, M., Vodičková, V., Hanus, P., Pazourková Prokopčáková, P., Čamek, L. & Moravec, J. ( (2021). Effect of higher silicon content and heat treatment on structure evolution and high-temperature behaviour of Fe-28Al-15Si-2Mo alloy. Materials. 14(11), 3031, 1-12. https://doi.org/10.3390/ma14113031.
  • Kasińska, J., Matejka, M., Bolibruchová, D., Kuriš, M., & Širanec, L. (2021). Effect of returnable material in batch on hot tearing tendency of AlSi9Cu3 alloy. Materials. 14(7), 1583, 1-15. https://doi.org/10.3390/ma14071583.
  • Sun, Z., Tan, X., Wang, C., Descoins, M., Mangelinck, D., Tor, S. B., Jagle, E.A., Zaefferer, S. & Raabe, D. (2021). Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Materialia. 204, 116505, 1-14. https://doi.org/10.1016/j.actamat. 2020.116505.
  • Liu, L., Mohamed, A. M. A., Samuel, A. M., Samuel, F. H., Doty, H. W. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in al-si based casting alloys. Metallurgical and Materials Transactions A. 40, 2457-2469. https://doi.org/10.1007/s11661-009-9944-8.
  • Wang, X., Wood, J. V., Sui, Y., & Lu, H. (1998). Formation of intermetallic compound in iron-aluminum alloys. Journal of Shanghai University (English Edition). 2, 305-310. https://doi.org/10.1007/s11741-998-0045-5.
  • Narayanan, L.A., Samuel, F.H. & Gruzleski, J.E. (1994). Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metallurgical and Materials Transactions A. 25, 1761-1773. https://doi.org/10.1007/BF02668540.
  • Razaz, G. & Carlberg, T. (2019). Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr. Metallurgical and Materials Transactions A. 50, 3842-3854. https://doi.org/10.1007/s11661-019-05290-1.
  • Li, M., Li, Y. & Zhou, H. (2020). Effects of pouring temperature on microstructure and mechanical properties of the A356 aluminum alloy diecastings. Materials Research. 23(1), 1-11. https://doi.org/10.1590/1980-5373-MR-2019-0676.
  • Akhyar, H., Malau, V. & Iswanto, P.T. (2017). Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. Results in Physics. 7, 1030-1039. https://doi.org/10.1016/j.rinp.2017.02.041.
  • Eskin, D.G., Suyitno & Katgerman, L. (2004). Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Progress in Materials Science. 49(5), 629-711. https://doi.org/10.1016/S0079-6425(03)00037-9.
  • Katayama, S. (2001). Solidification phenomena of weld metals. Solidification cracking mechanism and cracking susceptibility (3rd report). Welding International. 15(8), 627-636. https://doi.org/10.1080/09507110109549415.
  • Li, Y., Li, H., Katgerman, L., Du, Q., Zhang, J. & Zhuang, L. (2021). Recent advances in hot tearing during casting of aluminium alloys. Progress in Materials Science. 117, 100741, 1-77. https://doi.org/10.1016/j.pmatsci.2020.100741.
  • Subroto, T., Miroux, A., Bouffier, L., Josserond, C., Salvo, L., Suéry, M., Eskin, D.G. & Katgerman, L. (2014). Formation of hot tear under controlled solidification conditions. Metallurgical and Materials Transactions A. 45, 2855-2862. https://doi.org/10.1007/s11661-014-2220-6.
  • Akhyar, (2022). Hot tearing, parameters, and mould types for observation–review. Archives of Foundry Engineering. 22(2), 25-49. DOI: 10.24425/afe.2022.140223.
  • Muojekwu, C.A., Samarasekera, I.V. & Brimacombe, J.K. (1995). Heat transfer and microstructure during the early stages of metal solidification. Metallurgical and materials transactions B. 26, 361-382. https://doi.org/10.1007/BF02660979.
  • Matejka, M., Bolibruchová, D. & Kantoríková, E. (2024). Study of susceptibility to tearing of AlSi5Cu2Mg alloy with addition of Zr and Ti. Archives of Foundry Engineering. 24(1), 107-114. DOI: 10.24425/afe.2024.149257.
  • Malau, V., Akhyar, & Iswanto, P.T. (2018). Modification of constrained rod casting mold for new hot tearing measurement. Archives of Metallurgy and Materials. 63(3), 1201-1208. DOI: 10.24425/123792.
  • Wang, L., Makhlouf, M., Apelian, D. (1995). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-38. https://doi.org/10.1179/imr.1995.40.6.221
Przejdź do artykułu

Autorzy i Afiliacje

Z. Zulfadhli
1 2
A. Akhyar
2
ORCID: ORCID
N. Ali
2
A. Arhami
2
S. Huzni
2
R. Maulana
2
Y.S. Ismail
3

  1. Doctoral Program-School of Engineering, Universitas Syiah Kuala, Indonesia
  2. Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia
  3. Department of Science and Biology, Universitas Syiah Kuala, Darussalam, Indonesia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Moulding sands with an inorganic binder are mainly used in non-ferrous metal casting employed in the automotive industry. The disqualifying factor for their use in iron alloy casting is their high final strength, associated with further solidification of the water glass as the temperature rises. The subject addressed in this study aims to improve the knockout properties of moulding sands with water glass. In this case, a foundry sand additive of geological origin was used. This additive is a reclaimed waste from the construction industry. The moulding sand was made with a binder, which was water glass R145 (3.5 parts by weight), and as a hardener, Flodur 1 was used in a ratio of 5% to the binder and additionally, 2 and 3 parts by weight of an additive with grain sizes of 0.2mm, 0.16mm, and 0.10mm were used. Research was conducted on the impact of strength on bending and stretching, as well as permeability. Subsequently, a test was carried out in accordance with the Polish standard PN-85/H11005 by pouring the mould with liquid metal. It was demonstrated that the investigated additive does not have a negative impact on bending strength and permeability values and reduces the amount of work required to remove the core from the cast iron casting.
Przejdź do artykułu

Bibliografia

  • Holtzer, M., Kmita, A. (2020). Sodium silicate moulding sands. In: Mold and cores sands in metalcasting: Chemistry and ecology (pp. 219-241). Springer, Cham.
  • Major-Gabryś, K., Puzio, S., Bryłka, A. & Kamińska, J. (2021) The influence of various matrixes on the strength properties of moulding sands with thermally hardened hydrated sodium silicate for the ablation casting process. Journal of Casting & Materials Engineering. 5(2), 31-35. DOI:10.7494/jcme.2021.5.2.31.
  • Lewandowski J.L. (1997). Materials for casting moulds. Kraków: Akapit. (in Polish).
  • Bielański, A. (2002). Fundamentals of Inorganic Chemistry. Part 2. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
  • Kmita, A. & Hutera, B. (2014). Methods of quality improvements of ecological moulding sands with water glass. Archives of Foundry Engineering. 14(SI2), 45-50.
  • Major-Gabryś, K. & Dobosz, S.M. (2011). The influence of the Glassex additive on technological and knock-out properties of the moulding sands with hydrated sodium silicate and new ester hardeners. Metallurgy and Foundry Engineering. 37(1), 33-40. https://doi.org/10.7494/mafe.2011.37.1.33.
  • Major-Gabryś, K., Dobosz, S.M., Jelínek, P., Jakubski, J. & Beňo, J. (2014). The measurement of high-temperature expansion as the standard of estimation of the properties of moulding sands with hydrated sodium silicate. Archives of Metallurgy and Materials. 59(2), 739-742. DOI:10.2478/amm-2014-0123.
  • Bobrowski, A., Kaczmarska, K., Sitarz, M., Drożyński, D., Leśniak, M., Grabowska, B. & Nowak, D. (2021). Dehydroxylation of perlite and vermiclite: impact on improving the knock-out properties of moulding and core sand with an inorganic binder. 14(11), 2946, 1-21. DOI:10.3390/ma14112946.
  • Anwar, N., Jalava, K. & Orkas, J. (2023). Experimental study of inorganic foundry sand binders for mold and cast quality. International Journal of Metalcasting. 17(3), 1697-1714. DOI:10.1007/s40962-022-00897-4.
  • Anwar, N., Sappinem, T., Jalava, K. & Orkas, J. (2021). Comprative experimental study of sand and binder for flowability and casting mold quality. Advanced Powder Technology. 32(6), 1902-1910. DOI:10.1016/j.apt.2021.03.040.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

J. Jakubski
1
ORCID: ORCID
D. Halejcio
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Currently, the aviation and automotive industries are seeing increasing interest in magnesium alloys. The manufacture of semi-finished and finished magnesium alloy products is mainly based on casting technology, which results from the good casting properties of these materials. There are some difficulties using plastic processing for magnesium alloys but it offers better mechanical properties. For these reasons, alternative ways of plastic forming are being sought for magnesium alloys. Research has also been undertaken into the development of production and forming technology of a new group of ultralight Mg-Li-Ca magnesium alloys, using conventional (classical extrusion) and unconventional plastic forming methods (KoBo extrusion). The paper presents the results of the study on plastic forming of Mg-8Li-2Ca alloy. The research material consisted of ingots with the dimensions ϕ 40 x 90 mm. Before the deformation process, the ingots were subjected to heat treatment. Classical extrusion tests and extrusion by SPD methods (KoBo) were performed. Using light and electron microscopy, the changes formed in the microstructure of the Mg-8Li-2Ca alloy in the initial state and after plastic deformation processes (classical extrusion, KoBo extrusion) are presented. Quantitative analysis of the microstructure of the Mg-8Li-2Ca alloy was performed using Metilo software after the deformation process. The mechanical properties were evaluated based on the results from the conducted HV0.2 hardness measurements and the static tensile test performed at room temperature.
Przejdź do artykułu

Bibliografia

  • Yang, Z., Li, J.P., Zhang, J.X. & Lorimer, G.W. (2008). Review on research and development of magnesium alloys. Acta Metallurgica Sinica. 21(5), 313-328. DOI: 10.1016/S1006-7191(08)60054-X.
  • Wang, T., Zhang M-L. & Wu R-Z. (2007). Microstructure and mechanical properties of Mg-5.6Li-3.37Al-1.68Zn-1.14Ce alloy. Transactions of NouFerrous Metals Society of China. 17, 444-447.
  • Bednarczyk, I. (2023). The Influence of the casting process on shaping the primary structure of Mg-Li alloys. Archives of Foundry Engineering. 23(4), 137-144, DOI:10.24425/afe.2023.146688.
  • Bednarczyk, I. & Kuc, D. (2022). The influence of the deformation method on the microstructure and properties of magnesium alloy Mg-Y-RE-Zr. 15(6), 1-15. DOI:10.3390/ma15062017.
  • Yang H.P., Fu M.W., Wang G.C S. (2016). Investigation on the maximum strain rate sensitivity (m) superplastic deformation of Mg-Li based alloy. Materials & Design. 112, 151-159. DOI: 10.1016/j.matdes.2016.09.066.
  • Bajor, T., Muskalski, Z. & Suliga, M. (2010). Research on the drawing process with a large total deformation wires of AZ31 alloy. Journal of Physics, Conference Series. 240, 012107, 1-5. DOI: 012107.10.1088/1742-6596/240/1/012107.
  • Stefanik, A., Szota, P., Mróz, S., Bajor, T. & Dyja, H. (2015). Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes. Archives of Metallurgy and Materials. 60(4), 3001-3005. DOI:10.1515/amm-2015-0479.
  • Bohlen, J., Guadalupe, C., Drozdenko, D., Dobron, P., Ulrich Kainer, K., Gall, S., Müller, S. & Letzig, D. (2018). Processing effects on the formability of magnesium alloy sheets. Metals. 8(2), 147, 1-15. DOI:10.3390/met8020147.
  • Dutkiewicz, J., Kalita, D, Maziarz, W. & Faryna, M. (2020). Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging. Archives of Civil and Mechanical Engineering. 20(4), 121, 1-11. DOI: 10.1007/s43452-020-00128-9.
  • Furui, M., Xu, C., Aida, T., Inoue, M., Anada, H., & Langdon, T. G. (2005). Improving the superplastic properties of a two-phase Mg–8%Li alloy through processing by ECAP. Materials Science and Engineering A. 410-411, 439-442. DOI:10.1016/j.msea.2005.08.143.
  • Dutkiewicz, J., Bobrowski, P., Rusz, S., Ondrej, H., Tański, T., Borek, W., Łagoda, M., Ostachowski, P., Pałka, P., Boczkal, G., Kuc, D. & Mikuszewski, T. (2018). Effect of various SPD techniques on structure and superplastic deformation of two phase MgLiAl alloy. Metals and Materials International. 24, 1077-1089. DOI: 10.1007/s12540-018-0118-3.
  • Song, G.S. & Kral, M.V. (2005). Characterization of cast Mg–Li–Ca alloys. Materials Characterization. 54(4-5), 279-286. DOI: 10.1016/j.matchar.2004.12.001.
  • Al-Samman, T. (2009). Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy. Acta Materialia. 57(7), 2229-2242. DOI:10.1016/j.actamat.2009.01.031.
  • Wang, T., Zhang, M. & Wu, R. (2008). Microstructure and properties of Mg–8Li–1Al–1C alloy. Materials Letters. 62(12-13), 1846-1848. DOI: 10.1016/j.matlet.2007.10.017.
  • Myshlyaev, M.M., McQueen, H.J. & Konopleva, E. (1997). Microstructural development in Mg alloy AZ31 during hot working. Scripta Materialia. 37(11), 1789-1795. DOI: 10.1016/S1359-6462(97)00344-8.
  • Chang, T., Wang, J., Chu, Ch. & Lee, S. (2006). Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters. 60(2), 3272-3276. DOI: 10.1016/j.matlet.2006.03.052.
  • Furui, M., Kitamura, H., Anada, H. & Langdon, T. G. (2007). Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Materialia. 55(3), 1083-1091. DOI:10.1016/j.actamat.2006.09.027.
  • Abdullaev, R.N., Samoshkin, D.A., Agazhanov, A.Sh. & Stankus S.V. (2021). Heat capacity of pure magnesium and ultralight congruent magnesium–lithium alloy in the temperature range of 300 K to 825 K. Journal of Engineering Thermophysics. 30(2), 207-212. DOI: 10.1134/S1810232821020041.
  • Balawender, T., Zwolak, M. & Bąk, Ł (2020). Experimental analysis of mechanical characteristics of KoBo extrusion method. Archives of Metallurgy and Materials. 65(2), 615-619. DOI: 10.24425/amm.2020.132800.
  • Bochniak, W., Korbel, A., Ostachowski, P. & Łagoda, M. (2018). Plastic flow of metals under cyclic change of deformation path conditions. Archives of Civil and Mechanical Engineering. 18, 679-686. https://doi.org/10.1016/j.acme.2017.11.004.
  • Chuanqiang Li., Yibin He. & Huaipei Huang. (2021). Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys. Journal of Magnesium and Alloys. 9(2), 569-580. https://doi.org/10.1016/j.jma.2020.02.022.
  • Szala, J. (2000). Application of computer picture analysis methods to quantitative assessment of structure in materials. Scientific Journals of Silesian University of Technology, Series Metallurgy. 1518, 167 (in Polish)

 

Przejdź do artykułu

Autorzy i Afiliacje

I. Bednarczyk
1
ORCID: ORCID

  1. Silesian University of Technology, Department Materials Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article presents the concept of overheating the liquid AlSi17 alloy significantly above the Tliq. temperature, holding it at this temperature for a specified time, and casting it into two moulds with different cooling rates: a bentonite-based sand mould and a copper chill mould. Based on the obtained research results, it was found that overheating the AlSi17 alloy to temperatures of 920-960°C significantly improves mechanical properties, namely: tensile strength by approximately 40%, yield strength by approximately 70%, elongation by approximately 89% (for the sand mould - SM) and approximately 61% (for the copper metal mould - MM), reduction of area/ narrowness by approximately 67% (for SM) and approximately 51% (for MM) compared to the alloy without overheating. This process also reduces the scatter of the tested properties, indicating better homogeneity of the cast structure. Overheating the AlSi17 alloy to the optimal temperature range above Tliq. (in terms of the tested mechanical properties) also affects the morphology of primary silicon crystals. Such a structure, improving mechanical properties, increases the application area of hypereutectic Al-Si alloys, especially in the automotive and aerospace industries for heavily loaded castings operating under extreme thermal-mechanical stress conditions.
Przejdź do artykułu

Bibliografia

  • Hu, Z., Huo, Q., Chen, Y., Liu, M. & Chen (2023). Improving mechanical property of hyper-eutectic Al-Si alloys via regulating the microstructure by rheo-die-casting. Metals. 968-982, 1-14. https://doi.org/10.3390/met13050968.
  • Lee, J.A. (2023). Cast aluminum alloys for high temperature applications. The Minerals, Metals and Materials Society, Automotive Alloys. 1-8. https://ntrs.nasa.gov/api/citations/20030106070/downloads/20030106070.pdf.
  • Kaufman, J.G. (2008). Properties of Aluminum Alloys. Materials Park, Ohio, USA: ASM International.
  • Elmadagli, M., Perry, T. & Alpas, A.T. (2007). A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys. 262(1-2), 79-92. https://doi.org/10.1016/j.wear.2006.03.043.
  • Dai, H.S. & Liu, X.F. (2008). Refinement performance and mechanism of an Al-50Si alloy. Materials Characterization. 59 (11), 1559-1563. https://doi.org/10.1016/j.matchar.2008.01.020.
  • Gupta, M. & Ling, S. (1999). Microstructure and mechanical properties of hypohyper-eutectic Al-Si alloys synthesized using a near-net shape forming technique. Journal of Alloys and Compounds. 287(1-2), 284-294. https://doi.org/10.1016/S0925-8388(99)00062-6.
  • Vijayan, V., Ravi, M. & Prabhu, K.N. (2021). Effect of Ni and Sr additions on the microstructure, mechanical properties, and coefficient of thermal expansion of Al-23%Si alloy. Materials Today Proceedings. 46(7), 2732-2736. https://doi.org/10.1016/j.matpr.2021.02.421.
  • Xu, C.L. & Jiang, Q.C. (2006). Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Materials Science and Engineering A. 437(2), 451-455. https://org/10.1016/j.msea.2006.07.088.
  • Xu, C.L., Wang, H.Y., Liu, C. & Jiang, Q.C. (2006). Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth. 291(2), 540-547. https://doi.org/10.1016/j.jcrysgro.2006.03.044.
  • Chaus, A., Marukovich, E. & Sahul, M. (2020). Effect of Rapid Quenching on the Solidification Microstructure, Tensile Properties and Fracture of Secondary Hypereutectic Al-18%Si-2%Cu Alloy. 10(6), 819-828. https://doi.org/10.3390/met10060819.
  • Wagner, C. & Laplanche, G. (2023). Effect of grain size on critical twinning stress and work hardening behavior in the equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Plasticity. 166. 103651, 1-20. https://doi.org/10.1016/j.ijplas.2023.103651.
  • Hamilton, D.R. &Seidensticker, R.G. (1963). Growth mechanisms of germanium dendrites: kinetics and the nonisothermal interface. Journal of Applied Physics. 34(5), 1450-1460. https://doi.org/10.1063/1.1729599.
  • Fredriksson, H. & Hillert, M. (1971). On the mechanism of feathery crystallisation of aluminium. Journal of Materials Science. 6, 1350-1354. https://doi.org/10.1007/BF00549679.
  • Kobayashi, K.F. & Hogan, L.M. (1985). The crystal growth of silicon in Al-Si alloys. Journal of Materials Science. 20, 1961-1975. https://doi.org/10.1007/BF01112278.
  • Wu, Y., Wang, S., Li, H., & Liu, X. (2009). A new technique to modify hypereutectic Al–24%Si alloys by a Si–P master alloy. Journal of Alloys and Compounds. 477(1-2), 139-144. https://doi.org/10.1016/j.jallcom.2008.10.015.
  • Vijeesh, V.K., & Narayan Prabhu, K. (2014). Review of microstructure evolution in hypereutectic Al–Si alloys and its effect on wear properties. Transactions of the Indian Institute of Metals. 67(1), 1-18. https://doi.org/10.1007/s12666-013-0327-x.
  • Xu, C.L., Yang, Y.F., Wang, H.Y., & Jiang, Q.C. (2007). Effects of modification and heat-treatment on the abrasive wear behavior of hypereutectic Al–Si alloys. Journal of Materials Science. 42, 6331-6338. https://doi.org/10.1007/s10853-006-1189-y.
  • Jeon, J.H., Shin, J.H. & Bae, D.H. (2019). Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Materials Science and Engineering: A. 748, 367-370. https://doi.org/10.1016/j.msea.2019.01.119.
  • Szajnar, J., Wróbel, T. & Jezierski, J. (2008). Inoculation of pure aluminum with an electromagnetic field. Journal of Manufacturing Processes. 10(2), 74-81. http://dx.doi.org/10.1016/j.jmapro.2009.03.003.
  • Lu, D., Jiang, Y., Guan, G., Zhou, R., Li, Z. & Zhou, R. (2007). Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. Journal of Materials Processing Technology. 189(1-3), 13-18. https://doi.org/10.1016/j.jmatprotec.2006.12.008.
  • Wang, J., He, S., Sun, B., Guo, Q. & Nishio, M. (2003). Grain refinement of Al–Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology. 141(1), 29-34.https://doi.org/10.1016/S0924-0136(02)01007-5.
  • Wang, J., He, S., Sun, B., Li, K., Shu, D. & Zhou, Y. (2002). Effects of melt thermal treatment on hypoeutectic Al–Si alloys. Materials Science and Engineering: A. 338(1-2), 101-107. https://doi.org/10.1016/S0921-5093(02)00067-9.
  • Da Silveira, A.F. & de Castro, W.B. (2004). Microstructure of under-cooled Sn–Bi and Al–Si alloys. Materials Science and Engineering: A. 375-377. 473-478. https://doi.org/10.1016/j.msea.2003.10.017.
  • Piątkowski J. (2013). Physical and Chemical Phenomena Affecting Structure, Mechanical Properties and Technological Stability of Hypereutectic Al-Si Cast Alloys After Overheating. Silesian University of Technology. Gliwice. (in Polish).
Przejdź do artykułu

Autorzy i Afiliacje

K.K. Hillebrandt-Szymańska
1
ORCID: ORCID
J. Piątkowski
2
ORCID: ORCID

  1. Łódź University of Technology, Poland
  2. Silesian University of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Though additives developed for foundries are widely used across the globe, their direct effects remain unclear, and the mechanisms of their action within core and moulding mixtures have not yet been precisely described. When utilizing these new additives, it is expected that they will enable the production of castings free from external defects, such as veining or surface flaws. The newly formulated additive, Surwaybest, is composed of iron oxides - specifically magnetite - which promotes cooling through an endothermic reaction while simultaneously generating FeO. The presence of FeO in the core mixture, alongside SiO2, supports the formation of a fayalite layer around the base sand grains, reducing subsurface tension within the mould or core. Surwaybest also contains an insoluble polysaccharide that burns off when the core is cast into the mould, creating space for the quartz base sand to expand. Additionally, it includes carbon, which undergoes dehydrogenation from the molten metal's heat while softening, filling the intergranular spaces, and coating individual grains
Przejdź do artykułu

Bibliografia

  1. Odehnal, J., Sculpture, L., Gryc, K., Šural, R., Bulín, J. & Straka, J. (2018). Influence of refining on achieving low oxygen contents at production of special steels for energetic industry. In Metal 2018: 27th International Conference on Metallurgy and Materials, 23 - 25 May 2018 (pp. 93-101). TANGER Ltd., Ostrava, Czech Republic.
  2. Udayan, N., Srinivasan, M. V., Vignesh, R. V. & Govindaraju, M. (2021). Elimination of casting defects induced by cold box cores. Materials Today: Proceedings. 46(10), 5022-5026. https://doi.org/10.1016/j.matpr. 2020.10.398.
  3. Vasková, I. & Hrubovčáková, M. (2015). Burrs from cores produced by cold-box-amine method and possibility of their elimination in Eurocast Košice s.r.o. company. Archives of Foundry Engineering. 15(1), 115-120.
  4. Hrubovčáková, M., Vasková, I., Benková, M. & Conev, M. (2016). Opening material as a possibility of elimination veining in foundries. Archives of Foundry Engineering. 16(3), 1897-3310. https://doi.org/10.1515/afe-2016-0070.
  5. González, R., Colás, R., Velasco, A. & Valtierra S. (2015). Characteristics of phenolic-urethane cold box sand cores for aluminum casting. International Journal of Metalcasting. 5, 41-48. https://doi.org/1007/BF03355506.
  6. Pereira, A.H.A., Miyaji, D.Y., Cabrelon, M.D., Medeiros, J. & Rodrigues, J.A. (2014). A study about the contribution of the a-b phase transition of quartz to thermal cycle damage of a refractory used in fluidized catalytic cracking units. 60(355), 449-456. https://doi.org/10.1590/S0366-69132014000300019.
  7. Kapranos, P. (2019). Current state of semi-solid net-shape die casting. 9(12), 1301, 1-13. https://doi.org/10.3390/met9121301.
  8. Fortini, A., Merlin, M. & Raminella, G. (2022). A. comparative analysis on organic and inorganic core binders for a gravity diecasting Al alloy component. International Journal of Metalcasting. 16(2), 674-688. https://doi.org/10.1007/s40962-021-00628-1.
  9. Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M. & Roczniak, A. (2020). Environmental impact of the reclaimed sand addition to molding sand with furan and phenol-formaldehyde resin—a comparison. Materials. 13(19), 674-688. https://doi.org/10.3390/ ma13194395.
  10. Dobosz, S.M., Major-Gabryś, K. & Grabarczyk, A. (2015). New materials in the production of moulding and core sands. Archives of Foundry Engineering. 15(4), 25-28. https://doi.org/10.1515/afe-2015-0073.
  11. Lechner, P., Fuchs, G., Hartmann, C., Steinlehner, F. Ettemeyer, F. & Volk, W. (2020). Acoustical and optical determination of mechanical properties of inorganically-bound foundry core materials. 13(11), 2531, 1-11. https://doi.org/10.3390/ma13112531.
  12. Grabowska, B., Żymankowska-Kumon, S., Cukrowicz, S., Kaczmarska, K., Bobrowski, A. & Tyliszczak, B. (2019). Thermoanalytical tests (TG–DTG–DSC, Py-GC/MS) of foundry binders on the example of polymer composition of poly(acrylic acid)–sodium carboxymethylcellulose. Journal of Thermal Analysis and Calorimetry. 138, 4427-4436. https://doi.org/10.1007/s10973-019-08883-5.
  13. Bargaoui, H., Azzouz, F., Thibault, D. & Cailletaud, G. (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of Materials Processing Technology. 246, 30-41. https://doi.org/10.1016/j.jmatprotec. 2017.03.002.
  14. Lechner, P., Stahl, J., Ettemeyer, F., Himmel, Tananau-Blumenschein, B.B. & Volk, W. (2018). Fracture statistics for inorganically-bound core materials. Materials. 11(11), 2306, 1-13. https://doi.org/10.3390/ma11112306.
  15. Bobrowski, A., Żymankowska-Kumon, S., Kaczmarska, K., Drożyński, D. & Grabowska, B. (2020). Studies on the gases emission of moulding and core sands with an inorganic binder containing a relaxation additive. Archives of Foundry Engineering. 20(2), 19-25. https://doi.org/10.24425/ afe.2020.131296.
  16. Zaretskiy, L. (2015). Modified silicate binders new developments and applications. International Journal of Metalcasting. 10, 88-99. https://doi.org/10.1007/s40962-015-0005-3.
  17. Zaretskiy, L. (2018). Hydrous solid silicates in new foundry binders. International Journal of Metalcasting. 12, 275-291. https://doi.org/10.1007/s40962-017-0155-6.
  18. Liu, F., Fan, Z., Liu, X., Huang, Y. & Jiang, P. (2016). Effect of surface coating strengthening on humidity resistance of sodium silicate bonded sand cured by microwave heating. Materials and Manufacturing Processes. 31(12), 1639-1642. https://doi.org/10.1080/10426914.2015.1117631.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

M. Hrubovčáková
1
ORCID: ORCID
B. Buľko
2
ORCID: ORCID
P. Demeter
3
ORCID: ORCID
S. Hubatka
3
ORCID: ORCID
L. Fogaraš
3
ORCID: ORCID
J. Demeter
3
ORCID: ORCID
D. Dubec
3
ORCID: ORCID
P. Šmigura
3
ORCID: ORCID

  1. University of Košice, Faculty of Materials, Metallurgy and Recycling, Košice, Slovak Republic
  2. BBB Consulting s.r.o., Mosadzná 389/8, 040 17 Košice-Barca, ID: 56 535 350, Slovak Repulic
  3. Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, Košice, Slovak Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

A physical model of a foundry degassing unit (FDU) uses a simplified approach to melt modelling and degassing. While maintaining the realistic geometry of the rotor, the shape and size of the refining ladle, and the type and amount of inert gas, the original melt is replaced by water. The experimentally evaluated quantity is the degassing efficiency of the melt. Assessing the flow and pressure characteristics in the refining ladle is very complicated experimentally, and it is necessary to use numerical modelling. Numerical modelling of multiphase flow allows the identification, comparison, and quantification of individual flow and pressure characteristics, which can be verified by mutual correlation on basic experimental measurements. Validation of the numerical model is crucial both from the point of view of comparing different states and from the point of view of more advanced multiphase simulations based on this basic model. This article aims to describe the basic numerical model of multiphase flow using the Volume of Fluid (VOF) method for the physical model of the FDU and its verification against experimental measurements.
Przejdź do artykułu

Bibliografia

  • Saternus, M., Merder, T. & Warzecha, P. (2011). Numerical and physical modelling of aluminium barbotage process. Solid State Phenomena. 176, 1-10. DOI: 10.4028/www.scientific.net/SSP.176.1.
  • Yamamoto, T., Takahashi, H., Komarov, S.V., Shigemitsu, M., Taniguchi, R. & Ishiwata Y. (2021). Physical modeling of rotary flux injection in an aluminum melting furnace. Metallurgical and Materials Transactions B. 52(5), 3363-3372. DOI: 10.1007/s11663-021-02265-9.
  • Liu, X., Zhang, Z., Hu, W., Le, Q., Bao, L., Cui, J. & Jiang, J. (2015). Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process. Ultrasonics Sonochemistry. 26, 73-80. DOI: 10.1016/j.ultsonch.2014.12.015.
  • Yamamoto, T., Kato, K., Komarov, S.V., Taniguchi, R. & Ishiwata, Y. (2020) Evaluation of aluminum dross generation rate during mechanical stirring of aluminum through model experiment and numerical simulation. Metallurgical and Materials Transactions B. 51(4), 1836-1846. DOI: 10.1007/s11663-020-01842-8.
  • Abreu-López, D., Amaro-Villeda, A., Acosta-González, F., González-Rivera, C. & Ramírez-Argáez, M. (2017). Effect of the impeller design on degasification kinetics using the impeller injector technique assisted by mathematical modeling. Metals. 7(4), 132, 1-14. ISSN 2075-4701. DOI: 10.3390/met7040132.
  • Hernández-Hernández, M., Cruz-Mendez, W., González-Rivera, C. & Ramírez-Argáez, M. A. (2014). Effect of process variables on kinetics and gas consumption in rotor-degassing assisted by physical and mathematical modeling. Materials and Manufacturing Processes. 30(2), 216-221. DOI: 10.1080/10426914.2014.952303.
  • Mancilla, E., Cruz‐Méndez, W., Ramírez‐Argáez, M.A., González‐Rivera, C. & Ascanio, G. (2019). Experimental measurements of bubble size distributions in a water model and its influence on the aluminum kinetics degassing. The Canadian Journal of Chemical Engineering. 97(S1), 1729-1740. DOI: 10.1002/cjce.23432.
  • Gyarmati, G., Fegyverneki, G., Tokár, M. & Mende, T. (2021). The effects of rotary degassing treatments on the melt quality of an Al–Si casting alloy. International Journal of Metalcasting. 15(1), 141-151. DOI: 10.1007/s40962-020-00428-z.
  • Versteeg, H.K. (2007). An introduction to computational fluid dynamics: the finite volume method. (2nd ed.). Harlow: Pearson/Prentice Hall.
  • Wendt, J.F. (2008). Computational Fluid Dynamics: An Introduction. (3rd ed.). Heidelberg: Springer Berlin.
  • Abreu-López, D., Dutta, A., Camacho-Martínez, J.L., Trápaga-Martínez, G. & Ramírez-Argáez, M.A. (2018). Mass transfer study of a batch aluminum degassing ladle with multiple designs of rotating impellers. Journal of the Minerals, Metals, and Materials Society. 70(12). 2958-2967. DOI: 10.1007/s11837-018-3147-y.
  • Yamamoto, T., Suzuki, A., Komarov, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
  • Gómez, E.R., Zenit, R., Rivera, C.G., Trápaga, G. & Ramírez-Argáez, M.A. (2013). Mathematical modeling of fluid flow in a water physical model of an aluminium degassing ladle equipped with an impeller-injector. Metallurgical and Materials Transactions B. 44, 423-435. DOI: 10.1007/s11663-012-9774-8
  • Warke, V.S., Shankar, S. & Makhlouf, M.M. (2005). Mathematical modeling and computer simulation of molten aluminum cleansing by the rotating impeller degasser. Journal of Materials Processing Technology. 168(1), 119-126. DOI: 10.1016/j.jmatprotec.2004.10.016.
  • Mirgaux, O., Ablitzer, E., Waz, E. & Bellot, J.P. (2009). Mathematical modeling and computer simulation of molten aluminum purification by flotation in stirred reactor. Metallurgical and Materials Transactions B. 40B, 363-375. DOI: s11663-009-9233-3.
  • Merder, T., Saternus, M. & Warzecha, P. (2014). Possibilities of 3D model application in the process of aluminium refining in the unit with rotary impeller. Archives of Metallurgy and Materials. 59(2), 789-794. DOI: 10.2478/amm-2014-0134.
  • Yamamoto, T., Kato, W., Komarov, S.V. & Ishiwata, Y. (2019). Investigation on the surface vortex formation during mechanical stirring with an axial-flow impeller used in an aluminum process. Metallurgical and Materials Transactions B. 50(6), 2547-2556. DOI: 10.1007/s11663-019-01681-2.
  • Wilcox, D.C. (2006). Turbulence modeling for CDF. (3rd ed.). La Canada: DCW industries.
  • Launder, B.E. & Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
  • Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 32(8), 1598-1605. ISSN 0001-1452. DOI: 10.2514/3.12149.
  • Launder, B.E., Spalding, D.B. (1972). Lectures in mathematical Models of turbulence. London: Academic Press.
  • Hirt, C.W & Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics. 39(1), 201-225. DOI: 10.1016/0021-9991(81)90145-5.
  • Ferziger, J.H., Perić, M. (2012). Computational Methods for Fluid Dynamics. (3rd ed.). Heidelberg: Springer Berlin.
  • Prášil, T., Socha, L., Gryc, K., Sviželová, J., Saternus, M., Merder, T., Pieprzyca, J. & Gráf, M. (2022). Using physical modelling to optimize the aluminium refining process. Materials. 15(20), 7385, 1-12. DOI: 10.3390/ma15207385.
  • Mancilla, E., Cruz-Méndez, W., Garduño, I.E., González-Rivera, C., Ramírez-Argáez, M.A. & Ascanio, G. (2017). Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chemical Engineering Research and Design. 118, 158-169. DOI: 10.1016/j.cherd.2016.11.031.
Przejdź do artykułu

Autorzy i Afiliacje

L. Manoch
1 2
L. Socha
2
ORCID: ORCID
J. Sviželová
2
ORCID: ORCID
K. Gryc
2
ORCID: ORCID
A. Mohamed
2
ORCID: ORCID
J. Häusler
3

  1. Department of Materials and Engineering Metallurgy, Faculty of Mechanical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic
  2. Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic
  3. Die-casting Division, MOTOR JIKOV Slévárna a.s., 370 04 České Budějovice, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Sand Casting is the most basic metal manufacturing process. The cast metals are used in almost all sectors, such as automobiles, the aviation sector, etc. Due to the restrictions in the sand mining process and to achieve sustainable manufacturing, it is important to reduce usage and the wastage of fresh sand. However, it is difficult to replace fresh sand in cold box cores due to their properties, such as grain fineness, refractoriness, etc. The present work focuses on studying the effect of a cold box core shooter machine's process parameters on producing high-quality cores with maximum core hardness and minimum gas evolution. It also aims to increase the machine's productivity by decreasing the rejection rate and reducing the cycle time needed to produce cores. For the study, four factors at three levels were selected based on the prior data and also pilot experiments. The L27 orthogonal array of the Taguchi technique was used for experimentation. The desirability function approach is used to optimize both scratch hardness (Core hardness) and gas evolution as they are conflicting in nature; for example, core hardness needs to be maximized, and gas evolution needs to be minimized. It was found that to get maximum Scratch Hardness and minimum gas evolution, resin to hardener ratio must be 0.907, Amine on timer 16 secs, LPP 21 secs, and HPP 65 secs. The present work helped reduce the rejections and also helped achieve the production target with minimum machine runs. It also reduced 200kg of sand wastage, thus moving towards sustainable manufacturing.
Przejdź do artykułu

Bibliografia

  • Esmaeiliana, B.B.. Behdadb, S. & Wang, B. (2018). The evolution and future of manufacturing: A review. Journal of Manufacturing Systems. 48, 170-179.DOI:10.1016/j.jmsy.2018.02.004.
  • Singh, R. (2010). Introduction to basic manufacturing process and workshop technology. (2nd ed.). New Age International (P) Ltd.
  • Rao, P.N. (2018). Manufacturing Technology. Volume 1 (5th ed.). McGraw Hill.
  • Kumar, S., Padture, N.P. (2018). Materials in the aircraft industry: Prehistory to the Space Age. In Kaufman, B., Briant, C. (Eds), Metallurgical Design and Industry (pp 271-346) Springer, Cham. DOI:10.1007/978-3-319-93755-7_5.
  • MSME-Technology Development Centre. (2022). Diagnostic survey report for small-scale forging & foundry industries in north eastern states & Sikkim. Retrieved November 29, 2024, from https://nerpromotion.msme.gov.in/NERegion/schemes/FinalStudyreportPPDCAgrafoundryindustry.pdf.
  • Bobrowski, A., Kaczmarska, K., Drożyński, D., Woźniak, F., Dereń, M., Grabowska, B., Żymankowska-Kumon, S., Szucki, M. (2023). 3D printed (binder jetting) furan molding and core sands—thermal deformation, mechanical and technological properties. 16(9), 1-17. DOI:10.3390/ma16093339.
  • Viquar M. Mohammed, Krishnaiah A., Ferhathullah H. Syed (2016). Optimization of sand mould type and melting parameters to reduce porosity in Al-Si alloy castings. Leonardo Electronic Journal of Practices and Technologies. 15(28), 93-106. ISSN 1583-1078.
  • Czerwinski, F., Mir, M. & Kasprzak W. (2013). Application of cores and binders in metal casting. International Journal of Cast Metals Research. 28(3), 129-139. DOI: 10.1179/1743133614Y.0000000140.
  • Deore, D.S., Chaudhari, G.B., Chaturvedi, A.G. & Gunjal, S.U. (2015). A study of core and its types for casting process. Journal of Advanced Technology in Engineering and Science. 3(1), 1571-1580. ISSN: 2348-7550.
  • Abhilash, E., Ravi, B., Joshi, S.S. (2011). Opportunities in aerospace casting manufacture. In 26th Indian Engineering Congress,15th -18 December 2011 (pp. 1-8). Bangalore.
  • Deng, F., Li, R. & Klan, S. (2023). Traceability system of sand core in casting production with a digital-twin core rack. International Journal of Metalcasting. 18, 2525-2532. DOI:10.1007/s40962-023-01192-6.
  • Juriani, A. (2015). Casting defects analysis in foundry and their remedial measures with industrial case studies. IOSR Journal of Mechanical and Civil Engineering. 12(6), 43-54. ISSN: 2278-1684.
  • Stauder, B.J., Kerber, H. & Schumacher P. (2016). Foundry sand core property assessment by 3-point bending test evaluation. Journal of Materials Processing Technology. 237, 188-196. DOI:10.1016/j.jmatprotec.2016.06.010.
  • Zhang, B., Garro, M., Chautard, D. & Tagliano C. (2002). Gas evolution from resin-bonded sand cores prepared by various processes. Metallurgical Science and Technology. 20(2), 27-32.
  • Chang-jiang Ni, Gao-chun Lu, Jun-Jiao Wu. (2017). Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation. China Foundry. 14, 121-127. DOI:10.1007/s41230-017-6118-y.
  • Skrzyński, M., Dańko, R. & Dajczer, G. (2024). The Technique of inorganic core sand shooting with reduced pressure in venting system. Archives of Foundry Engineering. 24(2), 98-103. DOI:10.24425/afe.2024.149275.
  • Hrubovčáková, M., Vasková, I., Conev, M., Bartošová, M. & Futáš P. (2017). Influence the composition of the core mixture to the occurrence of veining on castings of cores produced by cold-box-amine technology. Manufacturing Technology. 17(1), 39-44. DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/1/39.
  • Holtzer, M., Dańko, R., Piasny, S., Kubecki, M., Drożyński, D., Roczniak, A., Skrzyński, M., Kmita A. (2021). Research on the release of dangerous compounds from the BTEX and PAHs groups in industrial casting conditions. Materials. 14(10), 2581, 1-10. DOI:10.3390/ma14102581.
  • Saetta, S. & Caldarelli, V. (2021). Technological innovations for green production: The Green Foundry case study. IET Collaborative Intelligent Manufacturing. 3(1), 85-92. DOI:10.1049/cim2.12014.
  • Behera, N.C., Jeet, S., Nayak, C.K., Bagal, D.K. Panda, S.N. & Barua, A. (2022), Parametric appraisal of strength & hardness of resin compacted sand castings using hybrid Taguchi-WASPAS-material generation algorithm. Materials today proceedings. 50(5), 1226-1233. DOI: 10.1016/j.matpr.2021.08.104.
  • Li, N., Wu, Q., Jiang, A., Zong, N., Wu, X., Kang, J., & Jing, T. (2023). Numerical research of gas-related defects for gray cast iron during sand casting. Materials Letters. 340, 134177, 1-4. DOI:10.1016/j.matlet.2023.134177.
  • Samuels, G. & Beckermann, C. (2012). measurement of gas evolution from PUNB bonded sand as a function of temperature. International Journal of Metal casting. 6, 23-40. DOI:10.1007/BF03355525.
  • Ross, P.J. (1995). Taguchi Techniques for Quality Engineering. (2nd ed.). New York: McGraw-Hill.
  • Phadke, M.S. (1989). Quality Engineering Using Robust Design. New Jersey: Prentice Hall, Englewood Cliffs.
  • Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73. DOI: 10.24425/afe.2023.146664.
  • Upadhye, R.A. & Keswani, I.P. (2012). Optimization of sand-casting process parameter using taguchi method in foundry. International Journal of Engineering Research and Technology. 1(7), 1-9. ISSN: 2278-0181.
  • Tariqa, S. Tariqa, A., Masud, M. & Rehman Z. (2022), Minimizing the casting defects in high-pressure die casting using Taguchi analysis. Transactions on Mechanical Engineering (B). 29(1), 53-69. DOI:10.24200/sci.2021.56545.4779.
  • Tzeng-Yuan Chen, Yi-Ting Liao. (2015). Investigations of pulse and continuous water electrolysis by taguchi method. Journal of Aeronautics, Astronautics, and Aviation. 47(4), 363-368. DOI:10.6125/15-0907-862.
  • Abdulamer, D., Muhsan, A.A. & Hamdi S.S. (2024). Utilizing taguchi method and regression analysis for optimizing sand mould flowability. Archives of Foundry Engineering. 24(3), 5-9. DOI:10.24425/afe.2024.151284.
  • Jeong, I. J., & Kim, K. J. (2009). An interactive desirability function method to multi-response optimization. European Journal of Operations Research, Elsevier. 195(2), 412-426. DOI:10.1016/j.ejor.2008.02.018.
  • Costa, N.R., Lourenco, J. & Pereira, Z.L. (2011). Desirability function approach: A review and performance evaluation in adverse conditions. Chemomatrics and Intelligent laboratory systems. 107(2), 234-244. DOI: 10.1016/j.chemolab.2011.04.004.
  • Bhardwaj, A.R., Vaidya, A.M., Meshram, P.D. & Bandhu, D. (2024). Machining behavior investigation of aluminium metal matrix composite reinforced with TiC particulates. International Journal on Interactive Design and Manufacturing. 18, 2911-2925. DOI:10.1007/s12008-023-01378-6.
  • Krishnaiah, K., Shahabudeen P. (2013). Applied design of experiments and taguchi methods. New Delhi: PHI Learning Private Limited.
  • Zych, J. & Jamrozowicz, Ł. (2011). The change of the gas pressure in cores made in cold-box technology during their hardening. Archives of Foundry Engineering. 11(4), 204-208.
  • Udayan, N., Srinivasan, M.V., Vignesh, R.V. & Govindaraju, M. (2021). Elimination of casting defects induced by cold box cores. Materials today proceedings. 46(10), 5022-5046. DOI: 10.1016/j.matpr.2020.10.398.
  • Sharma, P., Kishore, K, Singh, V. & Sinha, M.K. (2024). Optimization of process parameters for better surface morphology of electrical discharge machining-processed inconel 825 using hybrid response surface methodology-desirability function and multiobjective genetic algorithm approaches. Journal of Materials Engineering and Performance. 33, 11321-11337. https://doi.org/10.1007/s11665-023-08751-2.
  • Kariminejad, M., Tormey, D., Ryan, C., O'Hara, C., Weinert, A. & McAfee M. (2024). Single and multiobjective real-time optimisation of an industrial injection moulding process via a bayesian adaptive design of experiment approach. Electrical Engineering and System Science. 14(1), 29799, 1-19. DOI: 10.48550/arXiv.2402.12077.
  • Jumare, A. I., Abou-El-Hossein, K., Abdulkadir, L. N., & Liman, M. M. (2019). Predictive modeling and multiobjective optimization of diamond turning process of single-crystal silicon using RSM and desirability function approach. International Journal of Advanced Manufacturing Technology. 103, 4205-4220. DOI:10.1007/s00170-019-03816-w.
  • Ramanujam, R., Maiyar, L.M., Venkatesan K. & Vasan, M. (2014), Multi-response optimization using ANOVA and desirability Function analysis: a case study in end milling of Inconel alloy. ARPN Journal of Engineering and Applied Sciences. 9(4), 457-463. ISSN 1819- 6608.
  • Devarajaiah, D. & Muthumari, C. (2018). Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production. Journal of Brazilian Society of Mechanical Sciences and Engineering. 40(8), 400, 1-18. DOI:10.1007/s40430-018-1318-y.
Przejdź do artykułu

Autorzy i Afiliacje

G.R. Chate
1
P.H. Kulkarni
1
A. Gramopadhye
1
A. Kalbhairav
1
S. Chungade
1
H. Patil
1
A.M. Kono
2
N. Rangaswamy
3

  1. Mechanical Engineering Department, KLS Gogte Institute of Technology, Belagavi. Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India
  2. Grihalaxmi Metal Industries, Waghawade, Belagavi, Karnataka, India 590014
  3. School of Mechanical Engineering, REVA University, Bangalore, Karnataka, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The decomposition process of siderite (FeCO3) heated in an oxygen atmosphere and in a vacuum up to a temperature of 700oC, and the identification of the products of this process was studied using the 57Fe Mössbauer spectroscopy method. Two siderite samples were used for investigations. The measurements showed that one of the siderites was pure FeCO3, and the other had significant amounts of magnesium (Fe,Mg)CO3. The research results indicate that the siderite decomposition process begins at a temperature of 300oC. The main products of siderite decomposition are Fe-oxide nanoparticles. The crystallization process of these Fe-oxide begins at temperatures at which the decomposition of siderite almost ends, i.e., around 400oC for FeCO3 and 500oC for (Fe,Mg)CO3. The final products of siderite decomposition are hematite and magnetite or magnesioferrite. The magnetite formed in this process is poorly crystalline, what is confirmed by X-ray diffraction measurements and the shape of the Mössbauer spectra.
Przejdź do artykułu

Bibliografia

  • Klein, C. (2005). Some precambrian banded iron-formations (biifs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist. 90(10), 1473-1499. https://doi.org/10.2138/am.2005.1871.
  • Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S. & Dubrovinsky, L. (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist. 100(11-12), 2670-2681. https://doi.org/10.2138/am-2015-5319.
  • Zhu, X., Han, Y., Sun, Y., Gao, P. & Li, Y. (2022). Thermal decomposition of siderite ore in different flowing atmospheres: phase transformation and magnetism. Mineral Processing and Extractive Metallurgy Review. 44(3), 201-208. DOI: 10.1080/08827508.2022.2040498.
  • Mohamed, A., Al-Afnan, S., Elkatatny, S. & Hussein, I. (2020) Prevention of barite sag in water-based drilling fluids by a urea-based additive for drilling deep formations. Sustainability. 12(7), 2719, 1-19. https://doi.org/10.3390/su12072719.
  • Kruszewski, Ł. & Ciesielczuk, J. (2020). The behaviour of siderite rocks in an experimental imitation of pyrometamorphic processes in coal-waste fires: upper and lower silesian case, Poland. Minerals. 10(7), 586, 1-23. https://doi.org/10.3390/min10070586.
  • Ordoñez, L., Vogel, H., Sebag, D., Ariztegui, D., Adatte, T., Russell, J., Kallmeyer, J., Vuillemin, A., Friese, A., Crowe, S., Bauer, K., Simister, R., Henny, C., Nomosatryo, S. & Bijaksana, S. (2019). Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis. Organic Geochemistry. 134, 32-44. DOI: 10.1016/j.orggeochem.2019.05.002.
  • Ponomar, V.P., Dudchenko, N.O. & Brik, A.B. (2017). Phase transformations of siderite ore by the thermomagnetic analysis data. Journal of Magnetism and Magnetic Materials. 423, 373-378. DOI: 10.1016/j.jmmm.2016.09.124.
  • Isambert, A., Valet, J., Gloter, A. & Guyot, F. (2003). Stable Mn-magnetite derived from Mn-siderite by heating in air. Journal of Geophysical Research: Solid Earth. 108(B6), 2283, 1-9. DOI: 10.1029/2002JB002099.
  • Luo, Y.H., Zhu, D.Q., Pan, J. & Zhou, X.L. (2016) Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Mineral Processing and Extractive Metallurgy. 125(1), 17-25. DOI: 10.1080/03719553.2015.1118213.
  • Rancourt, D.G. & Ping, J.P. (1991). Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 58(1), 85-97. DOI: 10.1016/0168-583X(91)95681-3.
  • Piazzi, M., Morana, M., Coïsson, M., Marone, F., Campione, M., Bindi, L., Jones, A., Ferrara, E. & Alvaro, M. (2019). Multi-analytical characterization of Fe-rich magnetic inclusions in diamonds. Diamond and Related Materials. 98, 107489, 1-9. DOI: 10.1016/j.diamond.2019.107489.
  • Leon-Reina, L., Garcia-Mate, M., Alvarez-Pinazo, G., Santacruz, I., Vallcorba, O., De la Torre, G. & Aranda, M. (2016) Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations. Journal of Applied Crystallography. 49, 722-735. DOI: 1107/S1600576716003873.
  • Dhupe, A. & Gokarn, A. (1990). Studies in the thermal decomposition of natural siderites in the presence of air. International Journal of Mineral Processing. 28(3-4), 209-220. DOI: 10.1016/0301-7516(90)90043-X.
  • Ristić, M., Krehula, S., Reissner, M. & Musić, S. (2017). 57Fe Mössbauer, XRD, FT-IR, FE SEM Analyses of Natural Goethite, Hematite and Siderite. Croatica Chemica Acta. 90(3), 499-507. DOI: 10.5562/cca3233.
  • Klekotka, U., Winska, E., Satuła, D. & Kalska-Szostko, B. (2018). Mössbauer studies of surface modified magnetite particles. Acta Physica Polonica A. 134(5), 1003-1006. DOI: 10.12693/APhysPolA.134.1003.
  • Gervits, N., Gippius, A., Tkachev, A., Demikhov, E., Starchikov, S., Lyubutin, I., Vasiliev, A., Chekhonin, V., Abakumov, M., Semkina, M. & Mazhuga, A. (2019). Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents. Beilstein Journal of Nanotechnology. 10(1), 1964-1972. DOI: 10.3762/bjnano.10.193.
  • Lyubutin, I., Lin, C., Korzhetskiy, Yu., Dmitrieva, T. & Chiang, R. (2009). Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. Journal of Applied Physics. 106(3), 034311. DOI: 10.1063/1.3194316.
  • Mendoza, E., Santos, A., Lopez, E., Drozd, V. & Durygin, A. (2019). Iron oxides as efficient sorbents for CO2 Journal of Materials Research and Technology. 8(3), 2944-2956. DOI: 10.1016/j.jmrt.2019.05.002.
  • McCarty, K., Monti, M., Nie, S., Siegel, D., Starodub, E., El Gabaly, F., McDaniel, A., Shavorskiy, A., Tyliszczak, T., Bluhm, H., Bartelt, N. & de la Figuera, J. (2014). Oxidation of magnetite(100) to hematite observed by in situ spectroscopy and microscopy. The Journal of Physical Chemistry C. 118(34), 19768-19777. DOI: 10.1021/jp5037603.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

M. Kądziołka-Gaweł
1
ORCID: ORCID
Z. Adamczyk
2
M. Wojtyniak
2
ORCID: ORCID
J. Klimontko
1
ORCID: ORCID
J. Nowak
2

  1. University of Silesia, Poland
  2. Silesian University of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper presents the results of a study of the basic physical and chemical properties of a reductant traditionally used in the metallurgical industry, i.e. coke, and an alternative biomass reductant, rapeseed cake. The article also presents the results of research into the reduction of smelter slag with a high content of Cu and Pb with rapeseed cake and, for reference purposes, coke. The tests were conducted at 1400 oC and a holding time, 2h. The reductant additions ranged from 2-20 % by weight of the charge (slag) for biomass and 5, 10 and 15 for coke. The results obtained are discussed in the context of several parameters to assess the efficiency of the reduction processes.
Przejdź do artykułu

Bibliografia

  1. Zhou, S., Wei, Y., Li, B. & Wang, H. (2018). Effect of iron phase evolution on copper separation from slag via coal-based reduction. Metallurgical and Materials Transactions B. 49, 3089-3096. https://doi.org/10.1007/s11663-018-1379-4.
  2. Gorai, B. & Jana, R.K. (2002). Characteristics and utilization of copper slag – a review. Resources, Conservation and Recycling. 39(4), 299-313. DOI: 10.1016/S0921- 3449(02)00171-4.
  3. Heo, J., Kim, B. & Park, J.H. (2013). Effect of CaO addition on iron recovery from copper smelting slags by carbon. Metallurgical and Materials Transactions B. 44(6), 1352- 1363. DOI: 1007/s11663-013-9908-7.
  4. Erdenebold, U., Choi, M.H. & Wang, J.P. (2018). Recovery of pig iron from coper smelting slag by reduction smelting. Archives of Metallurgy and Materials. 63(4), 1793-1798. DOI: 10.24425/amm.2018.125106.
  5. Directorate-General for Climate Action (European Commission.) (2019). Going climate-neutral by 2050 – A strategic long-term vision for a prosperous, modern, competitive and climate-neutral EU economy. Publications Office.
  6. Chmielowiec, M. (2020). Biomasa jako źródło energii odnawialnej w Unii Europejskiej i w Polsce - Zagadnienia ekonomiczno - Prawne. Energia Gigawat. 5, 139-156.
  7. European Commission (2014). No 651/2014 declaring certain categories of aid compatible with the internal market in application of Articles 107 and 108 of the Treaty Text with EEA relevance - Commission Regulation
  8. European Commission (2023). “Critical Raw Materials: ensuring secure and sustainable supply chains for EU's green and digital future". Press release
  9. (2024). Food&Agro Sonar: Rapeseed production in Poland is growing and becoming more profitable. Retrieved October 20, 2024, from https://agronomist.pl/artykuly/foodagro-sonar-produkcja-rzepaku-w-polsce-rosnie-i-coraz-bardziej-sie-oplaca
  10. Beldycka-Borawska, A. (2023). Changes in the production of rapeseed in Poland after accession to the European Union. Annals of the Polish Association of Agricultural and Agribusiness Economists. XXV(4), 11–25.
  11. Vassilev, V.S., Baxter, D., Andersen, K.L. & Vassileva, C.G. (2010). An overview of the chemical composition of biomass. Fuel. 89(5), 913-993. DOI: 1016/j.fuel.2009.10.022.
  12. Jenkins B.M., Baxter, L.L. & Miles T.R. (1998). Combustion properties of biomass. Fuel Processing Technology. 54(1-3), 17-46. DOI: 1016/S0378-3820(97)00059-3.
  13. Havarland, B. (2000). Technical and economical evaluation of energetics biomass use. Nove trendy w prevadzke vyrobnej techniky. 22-23(11), 354-359.
Przejdź do artykułu

Autorzy i Afiliacje

Ł. Myćka
1
ORCID: ORCID
J. Łabaj
2
ORCID: ORCID
P. Madej
1
ORCID: ORCID
Ł. Kortyka
1
ORCID: ORCID
P. Palimąka
3
ORCID: ORCID
T. Matuła
2
ORCID: ORCID
A. Bukowska
4
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute of Non Ferrous Metals, Poland
  2. Silesian University of Technology, Poland
  3. AGH University of Krakow, Poland
  4. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The present work focuses on the structure characteristics of three un-inoculated ductile cast irons (0.035-0.045%Mgres), at high content of Si and Mo (I. 4.55%Si/4.71%CE; II. 5.25%Si/5.05%CE; III. 4.80%Si-2.30%Mo/4.75%CE) solidified on a cast iron chill, in furan resin sand moulds. At 4.55%Si iron, there resulted a chilled zone at 6-8mm, with carbides presence, lower graphite amount, higher nodule count and ferrite amount. Si increasing up to 5.25%Si led to a limited affected surface zone (up to 3mm), characterised by no carbides and the highest nodule count. Mo addition led to the most extensive chilled zone (11-15mm), with the lowest amount of graphite and ferrite, and the highest carbides amount, at the lowest nodule count. All irons are characterised by Type V, slightly irregular spheroidal graphite morphology, typical for the Roundness Shape Factor RSF=0.62-0.75 range, at the highest position for I, intermediary for II and at the lowest position for III cast irons. A higher Graphite Nodularity (NG) level resulted when it was calculated according to ISO 16112:2017 [CGI], comparing to ISO 945-4-2019 [DI]. By the use of the Sphericity Shape Factor (with graphite real perimeter), an intermediary position of NG was obtained; it is recommended to avoid the castings rejection, due to the lower values of NG resulted from ISO 945-4-2019 stipulation for High-Si DI. The increase of Si negatively affected the nodularity, while the supplementary Mo alloying led to the lowest NG. The chill solidification appears to have less effect on the NG of 4.55%Si iron, with the maximum influence for 4.8%Si-2.3%Mo iron and by the imposed RSF=min.0.80, especially for 5.25%Si content.
Przejdź do artykułu

Bibliografia

  • Campbell, J. (2015). Complete Casting Handbook. Butterworth Heinemann Publisher.
  • Foundry: Management&Technology. (2015). What, Why and Where for Chilling Large Molds. Retrieved June 20, 2024, from https:///foundrymag.com/ask-the-expert/article/21928515/ what-why-and-where-for-chilling-large-molds.
  • Purushotham, G. & Hemanth, J. (2014). Action of chills on microstructure, mechanical properties of chilled ASTM A 494 M grade Nickel alloy reinforced with fused SiO2 metal matrix composite. Procedia Materials Science. 5, 426-433. https://doi.org/10.1016/j.mspro.2014.07.285.
  • Jain, S.K. & Jain, V. (2014). Effect of chill size and material on temperature gradient in aluminium alloys casting. Journal of Material Science and Mechanical Engineering (JMSME). 1(2), 106-112. ISSN: 2393-9109.
  • Piekos M. & Zych, J. (2019). Investigations of the influence of the zone of chills on the casting made of AlSi7Mg alloy with various wall thicknesses. Archives of Foundry Engineering. 19(1), 127-132. DOI 10.24425/afe.2019.127106.
  • Gobinath, V.M., Adarsh Kumar, Annamalai K. & Rajadurai A. (2015). Effect of pouring temperature in chilled cast iron with different chill material. International Journal of Applied Engineering Research. 10(57), 160-163.
  • Kumruoglu, L.C. (2009). Mechanical and microstructure properties of chilled cast iron camshaft: experimental and computer aided evaluation. The Journal of Materials and Design. 30(4), 927-938. https://doi.org/10.1016/j.matdes.2008.07.008.
  • Yang, Y., Rosochowski, A., Wang, X. & Jiang, Y. (2004). Mechanism of “black line” formation in chilled cast iron camshafts. Journal of Materials Processing Technology. 145(2), 264-267. https://doi.org/10.1016/S0924-0136(03)00678-2.
  • Ping, L., Fengjun, L., Anke, C. & Bokang, W. (2009). Fracture analysis of chilled cast iron camshaft. China Foundry. 6(2), 104-108.
  • Binfeng, H (2012). Effect of Lanthanum on microstructure and properties of chilled iron camshaft. China Foundry, 9(1), 60-63.
  • Vaskova, I, Conev, M. & Hrubovcakova, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131-136. DOI: 10.1515/afe-2017-0064.
  • Hajkowski, J., Roquet, P., Khamashta, M., Codina, E. & Ignaszak, Z. (2017). Validation tests of prediction modules of shrinkage defects in cast iron sample. Archives of Foundry Engineering. 17(1), 57-66. DOI: 10.1515/afe-2017-0011.
  • Yoo, S.M., Cho, Y.S., Lee, C.C., Kim, J.H., Kim, C.H. & Choi J.K. (2007). Optimization of casting conditions for heat and abrasion resistant large grey iron castings. China Foundry. 4(2), 124-127.
  • Holmgren, D., Dioszegi, A. & Svensson, I.L. (2007). Effects of carbon content and solidification rate on thermal conductivity of grey cast iron. China Foundry. 4(3), 210-214.
  • Riebisch, M., Seiler, C., Pustal, B. & Buhrig-Polaczek, A. (2019). Microstructure of as-cast high-silicon ductile iron produced via permanent mold casting. International Journal of Metalcasting. 13(1), 112-120. https://doi.org/10.1007/s40962-018-0232-5.
  • Stan, I., Anca, D.E., Riposan, I. & Stan, S. (2023). Solidification pattern of 4.5%Si ductile iron in metal mould versus sand mould castings. Journal of Thermal Analysis and Calorimetry. 148, 1805-1817. https://doi.org/10.1007/s10973-022-11832-4.
  • Anca, D.E., Stan, , Riposan, I. & Stan, S. (2022). Graphite compactness degree and nodularity of high-si ductile iron produced via permanent mold versus sand mold casting. Materials. 15(8), 2712, 1-19. https://doi.org/10.3390/ma15082712.
  • Riposan, I., Stan, S., Anca, D., Stefan, E., Stan, I. & Chisamera, M. (2023). Structure characteristics of high-Si ductile cast irons. International Journal of Metalcasting. 17, 2389-2412. https://doi.org/10.1007/s40962-022-00938-y.
  • Stan, S., Riposan, I., Chisamera, M. & Stan, I. (2019). Solidification characteristics of silicon alloyed ductile cast irons. Journal of Materials Engineering and Performance. 28(1), 278-286. https://doi.org/10.1007/s11665-018-3828-2.
  • ISO 945-4-2019. Microstructure of cast irons-part 4: determination of nodularity in spheroidal graphite cast irons. International Standard Organization (ISO). Geneva, Switzerland.
  • GB/T 9441-2009. Metallographic test for evaluation of spheroidal graphite cast iron (National Standard of the People’s Republic of China). Standardization Administration of China. Beijing, China.
  • ISO 16112:2017. Compacted (vermicular) graphite cast irons- classification. International Standard Organization (ISO). Geneva, Switzerland.
  • Riposan, I., Anca, D., Stan, I., Chisamera, M. & Stan, S. (2022). Graphite nodularity evaluation in high-Si ductile cast irons. 15(21) 7685, 1-14. https://doi.org/10.3390/ma15217685.

 

 

Przejdź do artykułu

Autorzy i Afiliacje

I. Stan
1
D.E. Anca
1
M. Chisamera
1
I. Riposan
1
ORCID: ORCID
S. Stan
1

  1. National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Production cost reduction is one of the main goals which have to be achieved by modern melt shops. Optimisation of various phases of the melting process carried out in a steelmaking electric arc furnace is one of the ways to achieve required targets. The present paper reveals the details of the stage of research consideration of power consumption fluctuations, or rather the level of its stabilization, in determining the optimal moment to introduce the foaming agent. In analysis, it was decided to use the ‘moving coefficient of variation. The aim of the conducted statistical analysis was to determine the width of the time interval for calculating the moving coefficient of variation of active power and the width of the time interval for its stable, predetermined value. Within this analysis, the non-parametric Friedman test was used, a post-hoc test in the variant proposed by Dunn was used, taking into account the so-called Bonferroni correction. Ultimately, the foamer dispenser control procedure was formulated.
Przejdź do artykułu

Bibliografia

  1. Marique, C., Nyssen, P., Salamone, P. (1999). On-line control of the foamy slag in EAF. In Proceedings of the 6th European Electric Steelmaking Conference,13-15 June 1999 (pp.154-161). Düsseldorf, Germany: Verein Deutscher Eisenhüttenleute.
  2. Matschullat, T., Rieger, D., Kruger, K. & Dobbeler, A. (2008). Foaming slag and scrap melting behavior in electric arc furnace – a new and very precise detection method with automatic carbon control. Archives of Metallurgy and Materials. 53(2), 399-403.
  3. Landa, S., Rodriguez, T. & Munoz, JL. (2008). Dynamic control of slag foaming at Sidenor Basauri Meltshop. Archives of Metallurgy and Materials. 53(2), 419-424.
  4. Schwietz, J. & Panic, B. (2023). Improvement of the process of feeding the slag-foaming material to the electric arc furnace (EAF), using of the sound. Metalurgija. 62(2), 201-203.
  5. Shapiro, S.S. & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrica. 52(3/4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591.
  6. Siegel, S., Castellan N.J. Jr. (1988). Nonparametric statistic for the behavioral sciences. New York: Sec. Ed., McGraw-Hill, Inc., 1988.
Przejdź do artykułu

Autorzy i Afiliacje

B. Panic
1
ORCID: ORCID
J. Schwietz
2

  1. Silesian University of Technology, Faculty of Materials Engineering, Poland
  2. Stilmar Polska, Częstochowa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper proposes a methodology for leveraging convolutional neural networks (CNNs) in conjunction with advanced data preprocessing to facilitate optimal quality control decision-making in high pressure casting (HPDC) processes. The approach assists in predicting key values of the dependent variable associated with defect occurrence, enabling foundries to enhance product quality, reduce waste, and augment overall production process efficiency. The proposed study is founded on two principal pillars: the transformation of process tabular data (generated using the Conditional Tabular Generative Adversarial Network (CTGAN)), involving the mapping of features onto a fixed grid in a heatmap structure, and the configuration of the CNN algorithm to extract complex patterns in the data that are not readily apparent in the original tabular format. The study utilized a substantial dataset with a total of 61,584 images, and the most effective model attained an impressive Root Mean Square Error (RMSE) of 0.81, underscoring the model's remarkable capacity to accurately detect and predict casting quality issues. The model's efficacy was evaluated through its application to both large and small, differently distributed data sets. Utilizing a combination of statistical pre-processing, intelligent generative models, visual data transformations and deep learning, the methodology offers a comprehensive approach to enhancing production efficiency, ensuring superior process control and improving the quality of HPDC products. This development signifies a significant advancement in the field of intelligent systems for manufacturing process optimization, aligning with the principles of Industry 4.0 and Quality 4.0.
Przejdź do artykułu

Bibliografia

  • Mohan, T.R., Roselyn, J.P., Uthra, R.A. (2022). Digital smart kaizen to improve quality rate through total productive maintenance implemented industry 4.0. In 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 7-9 October 2022 (pp. 1-6). Bangalore, India. DOI: 10.1109/GCAT55367.2022.9971890.
  • Hsiao, H., Hung, M., Chen, Ch., Lin, Y. (2022). Cloud computing, internet of things (IoT), edge computing, and big data infrastructure. In Fan-Tien Cheng (Eds.), Industry 4.1: Intelligent Manufacturing with Zero Defects (pp.129-167). DOI: 10.1002/9781119739920.ch4.
  • Aleksandrova, S.V., Vasiliev, V.A., Alexandrov, M.N. (2019). Integration of quality management and digital technologies. In 2019 International Conference Quality Management, Transport and Information Security, Technologies (IT&QM&IS), 23-27 September 2019 (pp. 20-22). Sochi, Russia. DOI: 10.1109/ITQMIS.2019.8928426.
  • Shen, L., Wang, F., Zhou, Z., Xu, R. (2024). Research on the difficulty mining algorithm for the integration of multiple sets of data platforms based on big data analysis in smart factories. In 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), 27-29 February 2024 (pp. 1444-1448). Changchun, China. DOI: 10.1109/EEBDA60612.2024.10485802.
  • Li, D., Chen, X., Tan, P., Jia, J. (2024). How deep learning is implemented in manufacturing quality control. In 2024 3rd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), 20-22 September 2024 (pp. 1-4). Yichang, China. DOI: 10.1109/AICIT62434.2024.10729923.
  • Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M. & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review. 57(4), 99. DOI: 10.1007/s10462-024-10721-6.
  • Islam, R., Zamil, Z.H., Rayed, E. & Kabir, M. (2024). Deep learning and computer vision techniques for enhanced quality control in manufacturing processes. IEEE Access. 12, 99, 121449-121479. DOI: 10.1109/ACCESS.2024.3453664.
  • Ameri, R., Hsu, Ch., Band, S. (2024). A systematic review of deep learning approaches for surface defect detection in industrial applications. Engineering Applications of Artificial Intelligence. 130, 107717, 1-24. DOI: 10.1016/j.engappai.2023.107717.
  • O’Shea K., Nash R. (2015). An introduction to convolutional neural networks. Retrieved December 15, 2024, from https://doi.org/10.48550/arXiv.1511.08458.
  • Rahat, A.B. (2024). High-Pressure die casting (HPDC): precission, efficiency and innovation. Retrieved December 13, 2024, from https://www.linkedin.com/pulse/high-pressure-die-casting-hpdc-precision-efficiency-rahat-a-bhatia-vjh2c.
  • Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2021). Manufacturing processes for light alloys. In Materials, design and manufacturing for lightweight vehicles (pp. 267-320). Woodhead Publishing.
  • Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular data using conditional gan. Advances in neural information processing systems, 32.
  • Raghu, M. & Ganesh Kumar, D. (2024). A conditional tabular generative adversarial network (CTGAN)-based approach to safeguarding artificially created smart IoT setting. International Innovative Research Journal of Engineering and Technology. 9(4), 1-9. https://doi.org/10.32595/iirjet.org/v9i4.2024.194.
  • Topol, E.J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine. 25, 44-56. DOI: 10.1038/s41591-018-0300-7
  • Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Zhang, Y., Flores, G., Duggan, G.E., Irvine, J., Le, Q., Litsch, K., Mossin, A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M., Madabushi, S., Shah, N.H., Butte, A.J., Howell, M.D., Cui, C., Corrado, G.S. & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine. 1(1), 18, 1-10. DOI: 10.1038/s41746-018-0029-1
  • Bayat, A. (2002). Science, medicine, and the future: Bioinformatics. BMJ. 324, 1018-1022. DOI: 10.1136/bmj.324.7344.1018
  • Zhu, Y., Qiu, P., Ji, Y. (2014). TCGA-Assembler: Open-source software for retrieving and processing TCGA data. Nature methods. 11(6), 599-600. https://doi.org/10.1038/nmeth.2956.
  • Zhu, Y., Xu, Y., Helseth Jr, D. L., Gulukota, K., Yang, S., Pesce, L. L., Mitra, R., Muller, P., Sengupta, S., Guo, W., Silverstein, J.C., Foster, I., Parsad, N., White, K.P. & Ji, Y. (2015). A comprehensive depiction of genetic interactions in cancer by integrating TCGA data. Journal of the National Cancer Institute. 107(8), 129, 1-9. DOI: 10.1093/jnci/djv129.
  • Taha, M.E., Mahmoud, T.M. & Abd-El-Hafeez, T. (2023). A novel hybrid approach to masked face recognition using robust PCA and GOA optimizer. Scientific Journal for Damietta Faculty of Science. 13(3) 25-35. DOI: 10.21608/SJDFS.2023.222524.1117.
  • Elmessery, W. M., Maklakov, D. V., El-Messery, T. M., Baranenko, D. A., Gutiérrez, J., Shams, M. Y., El-Hafeez, T.A., Elsayed, S., Alhag, S.K., Moghanm, F.S., Mulyukin, M.A., Petrova, Y,Y. & Elwakeel, A.E. (2024). Semantic segmentation of microbial alterations based on SegFormer. Frontiers in Plant Science. 15, 1352935, 1-20. DOI: 10.3389/fpls.2024.1352935.
  • Girgis, M.R., Mahmoud, T.M., & Abd-El-Hafeez, T. (2010). A new effective system for filtering pornography images from web pages and PDF files. International Journal of Web Applications. 2(1), 1-13.
  • Eman, M., Mahmoud, T.M., Ibrahim, M.M. & Abd El-Hafeez, T. (2023). Innovative hybrid approach for masked face recognition using pretrained mask detection and segmentation, robust PCA, and KNN classifier. 23(15), 6727, 1-20. DOI:10.3390/s23156727.
  • Abd El-Hafeez, T. (2010). A new system for extracting and detecting skin color regions from PDF documents. International Journal on Computer Science and Engineering. 9(2), 2838-2846. ISSN : 0975-3397.
  • Mahmoud, T., Abd El-Hafeez, T. & Omar, A. (2014). A highly efficient content based approach to filter pornography websites. International Journal of Computer Vision and Image Processing. 2(1), 75-90. DOI:10.4018/ijcvip.2012010105.
  • Ali, A., Abd El-Hafeez, T. & Mohany, Y. (2019). A robust and efficient system to detect human faces based on facial features. Asian Journal of Research in Computer Science. 2(4), 1-12. DOI:10.9734/AJRCOS/2018/v2i430080.
  • Saabia, A.AB., El-Hafeez, T., Zaki, A.M. (2019). Face recognition based on grey wolf optimization for feature selection. In: Hassanien, A., Tolba, M., Shaalan, K., Azar, A. (Eds.), Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018. Springer, Cham. DOI: 10.1007/978-3-319-99010-1_25.
  • Ali, A.A., El-Hafeez, T.A. & Mohany, Y.K. (2019). An accurate system for face detection and recognition. Journal of Advances in Mathematics and Computer Science. 33(3), 1-19. DOI:10.9734/jamcs/2019/v33i330178.
  • Sharma, A., Vans, E., Shigemizu, D., Boroevich, K.A. & Tsunoda, T. (2019). DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Scientific Reports. 9, 11399, 1-7. DOI: 10.1038/s41598-019-47765-6.
  • Bazgir, O., Zhang, R., Dhruba, S. R., Rahman, R., Ghosh, S. & Pal, R. (2020) Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. Nature Communications. 11, 4391, 1-13. DOI: 10.1038/s41467-020-18197-y.
  • Ma, S., Zhang, Z. (2018). OmicsMapNet: Transforming omics data to take advantage of deep convolutional neural network for discovery. Machine Learning. 1, 1-33. https://arxiv.org/abs/1804.05283.
  • Van der Maaten, L.J.P., Hinton, G.E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research. 9(11), 2579-2605.
  • Nikhil, S., Sah, R. K., Parki, S. K., Tamang, T. B. & TR, M. (2023) Stock market prediction using genetic algorithm assisted LSTM-CNN hybrid model. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 6-8 July 2023 (pp. 1-6). Delhi, India. DOI: 10.1109/ICCCNT56998.2023.10306948.
  • Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics. 11(1), 92-99. https://doi.org/10.1145/102377.115768.
  • Zhu, Y., Brettin, T., Xia, F. & Partin, A. (2021). Converting tabular data into images for deep learning with convolutional neural networks. Scientific Reports. 11(1), 11325, 1-11. DOI:10.1038/s41598-021-90923-y.
  • Okuniewska, A., Perzyk, M. & Kozłowski, J. (2021). Methodology for diagnosing the causes of die-casting defects, based on advanced big data modelling. Archives of Foundry Engineering. 21(4), 103-109. DOI:10.24425/afe.2021.138687.
  • Okuniewska, A. (2023) Methodology for diagnosing the causes of product defects on the basis of advanced modelling based on big data sets. Retrieved December 13, 2024, from https://www.bip.pw.edu.pl/Postepowania-w-sprawie-nadania-stopnia-naukowego/Doktoraty/Wszczete-po-30-kwietnia-2019-r/Rada-Naukowa-Dyscypliny-Inzynieria-Mechaniczna/mgr-inz.-Alicja-Okuniewska/rozprawa-doktorska.
  • Okuniewska, A., Perzyk, M. & Kozłowski, J. (2023). Machine learning methods for diagnosing the causes of die-casting defects. Computer Methods in Materials Science. 23(2), 45-56. DOI:10.7494/cmms.2023.2.0809.
  • SDV (2024). Retrieved December 13, 2024, from Available: https://sdv.dev/SDV/api_reference/tabular/api/sdv.tabular.ctgan.CTGAN.html.
  • Marin, J. (2022). Evaluating synthetically generated data from small sample sizes: an experimental study. Machine Learning. Computer Science. 1, 1-24. DOI: 10.48550/arXiv.2211.10760.
  • Snoke, J., Raab, G. M., Nowok, B., Dibben, C., & Slavkovic, A. (2018) General and specific utility measures for synthetic data. Journal of the Royal Society Series, A: Statistics in Society. 181(3), 663-688. DOI: /10.1111/rssa.12358.
  • Carr, A. (2024). Evaluating data sampling methods with a synthetic quality score. Retrieved December 13, 2024, from https://gretel.ai/blog/evaluating-data-sampling-methods-with-a-synthetic-quality-score.
  • Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., Kasneci, G. (2022). Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems. 35(6), 7499-7519. DOI: 10.1109/TNNLS.2022.3229161.
  • S.A., Zaman, M., Kaul, S. & Butt, M.A. (2022). Is deep learning on tabular data enough? An Assessment. International Journal of Advanced Computer Science and Applications. 13(4), 466-473. DOI: 10.14569/IJACSA.2022.0130454.
  • Neto, L., et al., (2023). A comparative analysis of converters of tabular data into image for the classification of Arboviruses using Convolutional Neural Networks. PLoS One. 18(12), e0295598, 1-14. DOI:10.1371/journal.pone.0295598.
  • Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K. & Ghayvat, H. (2021). CNN variants for computer vision: history, architecture, application, challenges and future scope. 10(20), 2470, 1-28. https://doi.org/10.3390/electronics10202470.
  • Bouvrie, J (2006). Introduction Notes on Convolutional Neural Networks. Retrieved December 13, 2024, from https://web.mit.edu/jvb/www/papers/cnn_tutorial.pdf.
  • Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. Machine Learning. ArXiv preprint. 1-20. https://doi.org/10.48550/arXiv.1811.03378.
  • Kingma, D.P., Ba, J.A. (2014). A method for stochastic optimization. In 3rd International Conference for Learning Representations. San Diego.
  • Rajawat, A.S., Ghosh, A. (2022). Chapter six - Renewable energy system for industrial internet of things model using fusion-AI. In Applications of AI and IOT in Renewable Energy. 107-128. DOI: /10.1016/B978-0-323-91699-8.00006-1.
  • Kandel, I. & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express. 6(4), 312-315. DOI: 10.1016/j.icte.2020.04.010.
  • Burzyńska, A. (2024). Review of data-driven decision support systems and methodologies for the diagnosis of casting defects. Archives of Foundry Engineering. 24(4), 126-135. DOI: 10.24425/afe.2024.151320.
Przejdź do artykułu

Autorzy i Afiliacje

A. Burzyńska
1
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Decarbonization of steel making and allied processes have been receiving immense attention of researchers. Similarly, recycling of waste resources and conversion or recovery of useful materials from waste destined for landfills to mitigate environmental impact, is also an important area of research. Ferrosilicon (FeSi) is currently produced using carbothermic reduction and an energy intensive process. However, silicon (Si) from electronic wastes could be combined with scrap steel to produce FeSi. The Si from electronic waste will, however, contain some impurities such as Aluminium (Al), copper (Cu) and Tin (Sn), which could be incorporated into the FeSi produced from such Si. Hence, in this work the impact of the impurities on the properties of FeSi was investigated theoretically and systematically with the help of FactSage simulations. The impact of three major impurities associated with recycled Si (Al, Cu and Sn) were analysed when present individually and then all together. The analysis was done with the help of phase diagrams for solidification process occurring under equilibrium conditions. It was found that the impurities impact the proportion of the final phases and the melting and phase-transition temperatures. Further, the presence of different intermetallic phases could impact the mechanical properties of the alloy as well. The presence of three impurities together with Fe and Si leads to a complex multicomponent system. While further experiments are needed to identify the actual phases formed during such process, this work provides as framework for carrying out such experiments in the future.
Przejdź do artykułu

Bibliografia

  • Riva, L., Surup, G.R. Buø, T.V. & Nielsen, H.K. (2019). A study of densified biochar as carbon source in the silicon and ferrosilicon production. Energy. 181, 985-996. https://doi.org/10.1016/j.energy.2019.06.013.
  • Tangstad, M., Beukes, J.P., Steenkamp, J. & Ringdalen, E. (2019) Coal-based reducing agents in ferroalloys and silicon production. New Trends in Coal Conversion. 405-438. https://doi.org//10.1016/B978-0-08-102201-6.00014-5.
  • Ismail, A.N., Ibrahim, M.H., Said, R.M., Somidin, F., & Ismail, S.A. (2022) Influence of recycled wastes on ferrosilicon production in steel making applications: A short review. Journal of Physics: Conference Series. 012028, 1-5. https://doi.org/10.1088/1742-6596/2169/1/012028.
  • Tangstad, M. (2013) Ferrosilicon and silicon technology. Handbook of Ferroalloys. 179-220. https://doi.org/10.1016/B978-0-08-097753-9.00006-X.
  • Farzana, R. & Sahajwalla, V. (2015). Novel recycling to transform automotive waste glass and plastics into SiC-bearing resource by silica reduction. Journal of Sustainable Metallurgy. 1 65-74. https://doi.org/10.1007/s40831-014-0004-2.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2014). Transforming waste plastic into reductants for synthesis of ferrosilicon alloy. Industrial & Engineering Chemistry Research. 53(51), 19870-19877. https://doi.org/10.1021/ie5041513.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2013). Synthesis of ferrosilicon alloy using waste glass and plastic. Materials Letters. 116, 101-103. https://doi.org/10.1016/j.matlet.2013.10.105.
  • Farzana, R. Rajarao, R. & Sahajwalla, V. (2016). Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis. Waste Management & Research. 34(2), 113-121. https://doi.org/10.1177/0734242X15617010.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2017). Reaction mechanism of ferrosilicon synthesis using waste plastic as a reductant. ISIJ International. 57(10),  1780-1787. https://doi.org/10.2355/isijinternational.ISIJINT-2017-199.
  • Rajarao, R., Farzana, R. & Sahajwalla, V. (2018). Transforming waste printed circuit boards and compact discs for the synthesis of valuable ferrosilicon alloy. Journal of Sustainable Metallurgy. 4  4610-469. https://doi.org/10.1007/s40831-018-0194-0.
  • Kuz’min, M.P., Chu, P.K., Qasim, A.M., Larionov, L.M., Kuz’mina, M.Y. & Kuz’min, P.B. (2019). Obtaining of Al–Si foundry alloys using amorphous microsilica–Crystalline silicon production waste. Journal of Alloys and Compounds. 806, 806-813. https://doi.org/10.1016/j.jallcom.2019.07.312.
  • Blaesing, L., Walnsch, A., Hippmann, S., Modrzynski, C., Weidlich, C., Pavón, S. & Bertau, M. (2024). Ferrosilicon production from silicon wafer breakage and red mud. ACS Sustainable Resource Management. 1, 404-416. https://doi.org/10.1021/acssusresmgt.3c00035.
  • Ardente, F., Latunussa, C.E.L. & Blengini, G.A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management. 91, 156-167. https://doi.org/10.1016/j.wasman.2019.04.059.
  • Wang, X., Tian, X., Chen, X., Ren, L. & Geng, C. (2022). A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Solar Energy Materials and Solar Cells. 248, 111976, 1-12. https://doi.org/10.1016/j.solmat.2022.111976.
  • Cui, J. & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials. 158(2-3), 228-256. https://doi.org/10.1016/j.jhazmat.2008.02.001.
  • Latunussa, C., Mancini, L., Blengini, G., Ardente, F. & Pennington, D. (2016). Analysis of material recovery from silicon photovoltaic panels. JRC Publications Repository. JRC100783. https://doi.org/10.2788/786252.
  • Padhamnath, P., Buatis, J.K., Khanna, A., Nampalli, N., Nandakumar, N., Shanmugam, V., Aberle, A.G. & Duttagupta, S. (2020). Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPolyTM solar cells. Solar Energy. 202, 73-79. https://doi.org/10.1016/j.solener.2020.03.087.
  • Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part I. Materials Characterization. 49(4), 269-291. https://doi.org/10.1016/S1044-5803(03)00006-8.
  • Liu, Z.-K. & Chang, Y.A. (1999). Thermodynamic assessment of the Al-Fe-Si system. Metallurgical and Materials Transactions A. 30, 1081-1095. https://doi.org/10.1007/s11661-999-0160-3.
  • Fukaya, M., Miyazaki, T. & Kozakai, T. (1991). Phase diagrams calculated for Fe-rich Fe-Si-Co and Fe-Si-Al ordering alloy systems. Journal of Materials Science. 26, 5420-5426. https://doi.org/10.1007/BF02403939.
  • Akberdin, A.A., Kim, A.S., Orlov, A.S. & Sultangaziev, R.B. (2022). Diagram of the phase composition of the Fe–Si–Al system and its isothermal sections. CIS Iron Steel Rev. 23, 76-80.
  • Nová, K., Novák, P., Průša, F., Kopeček, J. & Čech, J. (2018). Synthesis of intermetallics in Fe-Al-Si system by mechanical alloying. Metals. 9(1), 20, 1-14. https://doi.org/10.3390/met9010020.
  • Tsakadze, Z., Tan, L.P., Davidson, K.P., Gorsse, S,. Chaudhary, V. & Ramanujan, R. V. (2024). Accelerated multi-property discovery of promising Fe-Si-Al magnetic alloys. Materialia. 36, 102168, 1-13. https://doi.org/10.1016/j.mtla.2024.102168.
  • Zhang, C., Chen, Y., Feng, S., Kan, X., Zhu, Y., Li, Y., Sun, W., Shen, J. & Liu, X. (2023). Improvement of electromagnetic properties of FeSiAl soft magnetic composites. Journal of Materials Science. 58, 9698-9707. https://doi.org/10.1007/s10853-023-08610-4.
  • Zuo, B., Saraswati, N., Sritharan, T. & Hng, H.H. (2004). Production and annealing of nanocrystalline Fe–Si and Fe–Si–Al alloy powders. Materials Science and Engineering: A. 371(1-2), 210-216. https://doi.org/10.1016/j.msea.2003.11.046.
  • Wakiyama, T., Takahashi, M.,  Nishimaki, S. & Shimoda, J. (1981). Magnetic properties of Fe-Si-Al single crystals. IEEE Transactions on Magnetics. 17(6), 3147-3150. https://doi.org/10.1109/TMAG.1981.1061694.
  • Shabestari, S.G. (1994) Formation of iron-bearing intermetallics in aluminum-silicon casting alloys. Canada: McGill University, Montreal, Quebec.
  • Li, X. & Li, Z. (2017) Experimental investigation of the 650° C isothermal section of the Cu-Fe-Si ternary phase diagram. Journal of Phase Equilibria and Diffusion. 38,  94-101. https://doi.org/10.1007/s11669-017-0519-x.
  • Heuer, M., Buonassisi, T., Istratov, A.A., Pickett, M.D., Marcus, M.A., Minor, A.M. & Weber E.R. (2007). Transition metal interaction and Ni-Fe-Cu-Si phases in silicon. Journal of Applied Physics. 101, 123510. https://doi.org/10.1063/1.2748346.
  • Wu, P.H., Liu, N. & Zhu, Z.X. (2015). Liquid-phase separation of undercooled Fe-Cu-Si alloy. Advanced Materials Research. 1095, 160-163. https://doi.org/10.4028/www.scientific.net/amr.1095.160.
  • Yamauchi, I., Irie, T. & Sakaguchi, H. (2005). Metastable liquid separation in undercooled Fe–Cu and Fe–Cu–Si melts containing a small B concentration and their solidification structure. Journal of Alloys and Compounds. 403(1-2), 211-216. https://doi.org/10.1016/j.jallcom.2005.05.031.
  • Yamauchi, I., Okamoto, H., Suganuma, A. & Ohnaka, I. (1998). Effects of Cu addition on the β-phase formation rate in Fe2Si5 thermoelectric materials. Journal of Materials Science. 33, 385-394. https://doi.org/10.1023/A:1004323930521.
  • Kataoka, T., Arita, Y., Takahashi, F., Fujimura, H., Kurosaki, Y., Sugiyama, M. & Ohnuma, I. (2016). Precipitation behavior of copper sulfides in Fe–Si–Cu–S ferritic steel. ISIJ International. 56(11), 2062-2067. https://doi.org/10.2355/isijinternational.ISIJINT-2016-056.
  • Wang, X., Zhou, B., Guo, Z., Liu, Y., Wang, J. & Su, X. (2017). Experimental investigation and thermodynamic calculation of the Fe–Si–Sn system, Calphad. 57,  88–97. https://doi.org/10.1016/j.calphad.2017.03.006.
  • Liu, Y., Yin, F., Hu, J., Zhi, L.I. & Cheng, S. (2018). Phase equilibria of Al–Fe–Sn ternary system, Transactions of Nonferrous Metals Society of China. 28(2), 282-289. https://doi.org/10.1016/S1003-6326(18)64661-8.
  • Li, J.G., Yuan, W.J., Zhou, Y. & Zhang, L.M. (2008). Effect of Sn on the sintering of Fe-Si alloys. Key Engineering Materials. 368-372, 1591-1592. https://doi.org/10.4028/www.scientific.net/KEM.368-372.1591.
  • Wołczyński, W. (2020). Pattern selection in the eutectic growth-thermodynamic interpretation. Archives of Metallurgy and Materials. 65, 653-666. https://doi.org/10.24425/amm.2020.132804.
  • Yang, C., Tan, Q., Liu, L., Dong, Q. & Li, J. (2017). Recycling tin from electronic waste: a problem that needs more attention. ACS Sustainable Chemistry & Engineering. 5(11), 9586-9598. https://doi.org/10.1021/acssuschemeng.7b02903.
  • Sapinov, R.V., Sadenova, M.A., Kulenova, N.A. & Oleinikova, N.V. (2020). Improving hydrometallurgical methods for processing tin-containing electronic waste. CET Journal-Chemical Engineering Transactions. 81, 1021-1026. https://doi.org/10.3303/CET2081171.
  • Barragan, J.A., Ponce de León, C., Alemán Castro, J.R., Peregrina-Lucano, A., Gómez-Zamudio, F. & Larios-Durán, E.R. (2020). Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques. ACS Omega. 5(21), 12355-12363. https://doi.org/10.1021/acsomega.0c01100.
  • Jadhao, P., Chauhan, G., Pant, K.K. & Nigam, K.D.P. (2016). Greener approach for the extraction of copper metal from electronic waste. Waste Management. 57, 102-112. https://doi.org/10.1016/j.wasman.2015.11.023.
  • Sinha, R., Chauhan, G., Singh, A., Kumar, A. & Acharya, S. (2018). A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste. Journal of Environmental Chemical Engineering. 6(1), 1053-1061. https://doi.org/10.1016/j.jece.2018.01.030.
  • Padhamnath, P., Ślęzak, M. & Karbowniczek, M. (2023). Disposing end of life PV modules – reusing, recycling and upcycling. In EU PVSEC 2023, EUPVSEC, (pp. 001–008). Lisbon, Portugal. https://doi.org/10.4229/EUPVSEC2023/5DV.2.62.
  • Pahari, A.K. & Dubey, B.K.  (2019) Waste from electrical and electronics equipment. Plastics to Energy 443-468. https://doi.org/10.1016/B978-0-12-813140-4.00018-2.
  • Littmann, M. (1971). Iron and silicon-iron alloys. IEEE Transactions on Magnetics. 7(1), 48-60. https://doi.org/10.1109/TMAG.1971.1066998.
  • Sigfússon, T.I. Helgason, Ö. (1990). Rates of transformations in the ferrosilicon system. Hyperfine Interactions. 54, 861-867. https://doi.org/10.1007/BF02396141.
  • Gilbert, A. & Owen, W.S. (1962). Diffusionless transformation in iron-nickel, iron-chromium and iron-silicon alloys. Acta Metallurgica. 10(1), 45-54. https://doi.org/10.1016/0001-6160(62)90185-2.
  • Hom, Q.C., Nassaralla, C.L. & Heckel, R.W (1998). Microstructural study of granulated ferrosilicon with 75wt% silicon. The Proceedings of ·INFACON. 8, 126-132. https://www.pyrometallurgy.co.za/InfaconVIII/126-Horn.pdf (accessed January 18, 2025).
  • Tomé-Torquemada, S., Glaser, B., Hildal, K. & Sichen, D. (2017). Experimental study on the activities of Al and Ca in ferrosilicon. Metallurgical and Materials Transactions B. 48, 3251-3258. https://doi.org/10.1007/s11663-017-1119-1.
  • Krause, O., Ryssel, H. & Pichler, P. (2002). Determination of aluminum diffusion parameters in silicon. Journal of Applied Physics. 91, 5645-5649. https://doi.org/10.1063/1.1465501.
  • Kim, Y.-M., Choi, S.-W. & Hong, S.-K. (2016). The behavior of thermal diffusivity change according to the heat treatment in Al-Si binary system. Journal of Alloys and Compounds. 687, 54-58. https://doi.org/10.1016/j.jallcom.2016.06.080.
  • McCaldin, J.O. & Sankur, H. (1971). Diffusivity and solubility of Si in the Al metallization of integrated circuits. Applied Physics Letters. 19, 524-527. https://doi.org/10.1063/1.1653799.
  • Blatt, F.J. (1955). Effect of point imperfections on the electrical properties of copper. I. Conductivity. Physical Review Journals Archive. 99, 1708. https://doi.org/10.1103/PhysRev.99.1708.
  • Murarka, S.P. (2001). Materials aspects of copper interconnection technology for semiconductor applications. Materials Science and Technology. 17(7), 749-758. https://doi.org/10.1179/026708301101510564.
  • Lennon, A., Colwell, J. & Rodbell, K.P. (2019). Challenges facing copper‐plated metallisation for silicon photovoltaics: Insights from integrated circuit technology development. Progress in Photovoltaics: Research and Applications. 27(1), 67-97. https://doi.org/10.1002/pip.3062.
  • Mondon, A., Jawaid, M.N., Bartsch, J., Glatthaar, M. & Glunz, S.W. (2013). Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells. Solar Energy Materials and Solar Cells. 117, 209-213. https://doi.org/10.1016/j.solmat.2013.06.005.
  • Kraft, A., Wolf, C., Bartsch, J., Glatthaar, M. & Glunz, S. (2015). Long term stability of copper front side contacts for crystalline silicon solar cells. Solar Energy Materials and Solar Cells. 136, 25-31. https://doi.org/https://doi.org/10.1016/j.solmat.2014.12.024.
  • Istratov, A.A. & Weber, E.R. (2002). Physics of Copper in Silicon. Journal of Electrochemical Society. 149(1),  G21-G30. https://doi.org/10.1149/1.1421348.
  • Istratov, A.A., Flink, C., Hieslmair, H., McHugo, S.A. & Weber, E.R. (2000). Diffusion, solubility and gettering of copper in silicon. Materials Science and Engineering: B. 72(2-3), 99-104. https://doi.org/https://doi.org/10.1016/S0921-5107(99)00514-0.
  • Joshi, K., Padhamnath, P.,  Bhandarkar, U. & Joshi, S.S. (2019). Surface quality and contamination on Si wafer surfaces sliced using wire-electrical discharge machining. Journal of Engineering Materials and Technology. 141(4),  041013. https://doi.org/10.1115/1.4044374.
  • Haccuria, E., Ning, P., Cao, H., Venkatesan, P., Jin, W., Yang, Y. & Sun, Z. (2017) Effective treatment for electronic waste-Selective recovery of copper by combining electrochemical dissolution and deposition. Journal of Cleaner Production. 152, 150-156. https://doi.org/10.1016/j.jclepro.2017.03.112.
  • Salje, G. & Feller‐Kniepmeier, M. (1977). The diffusion and solubility of copper in iron. Journal of Applied Physics. 48, 1833-1839. https://doi.org/10.1063/1.323934.
  • Salje, G. & Feller‐Kniepmeier, M. (1978). The diffusion and solubility of iron in copper. Journal of Applied Physics. 49,  229-232. https://doi.org/10.1063/1.324336
  • Olesinski, R.W. & Abbaschian, G.J. (1984). The Si− Sn (silicon− tin) system. Bulletin of Alloy Phase Diagrams. 5, 273-276. https://doi.org/10.1007/BF02868552.
  • Ehret, W.F. & Westgren, A.F. (1933). X-ray analysis of iron-tin alloys. Journal of the American Chemical Society. 55(4), 1339-1351.
  • Wołczyński, W. (2015). Back-diffusion in crystal growth. Eutectics. Archives of Metallurgy and Materials. 60(3), 2403-2407. https://doi.org/10.1515/amm-2015-0392.
  • W. Wołczyński, (2015). Back-diffusion in crystal growth. Peritectics. Archives of Metallurgy and Materials. 60(3), 2409-2414. DOI: 10.1515/amm-2015-0393.
Przejdź do artykułu

Autorzy i Afiliacje

P. Padhamnath
1
ORCID: ORCID
P. Migas
1
ORCID: ORCID
M. Karbowniczek
1
ORCID: ORCID

  1. AGH University of Krakow, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In thermal power plants, advanced wear-resistant alloyed irons have been used for over three decades to enhance the longevity of parts. Ni-hard irons, high chromium irons, and HCHC materials are commonly used in components like liners, bull rig segments, and orifices. These components are exposed to various types of failures, including abrasion, erosion, corrosion, and fatigue. Nickel-chromium irons, particularly Ni-hard 4 and high chromium irons, have proven effective in extending component life. However, the impact of scratching abrasion resistance on residual stress (RS) buildup has been less studied. This research investigates the wear behavior of nickel-chromium irons, focusing on Ni-hard and high chromium-manganese iron. Abrasion loss was measured using a rubber wheel abrader according to ASTM standards, and RS was evaluated through X-ray diffraction before and after abrasion testing. Supporting analyses, including hardness testing, phase analysis, carbide morphology, and microstructural evaluations, were performed to correlate abrasion with RS data. Scanning electron microscopy (SEM) was used to assess wear phenomena. The HiCr sample displays the highest hardness and compression strength, and lowest abrasion loss, followed by NH4, HiCr5Mn, HiCr10Mn, and HiCr15Mn samples. Higher Mn content introduces more brittle characteristics into the fracture process. Among HiCrMn samples, HiCr5Mn is preferred for abrasion resistance application; on the other hand, HiCr15Mn may be suitable in the field, possessing better resistance to impact and load bearing applications.
Przejdź do artykułu

Bibliografia

  • Lakkannavar, V., Yogesha, K.B., Prasad, C.D. & Prasad, C. (2024). Investigation of cyclic oxidation and hot corrosion behaviour of plasma-sprayed NiCrAlY/Cr3C2/h-BN/Mo coatings on T22 boiler steel alloy. Journal of Bio-and Tribo-Corrosion. 10(4), 85, 1-18. https://doi.org/10.1007/s40735-024-00890-w.
  • Purushotham, N., Parthasarathi, N.L., Babu, P.S., Sivakumar, G. & Rajasekaran, B. (2023). Effect of thermal expansion on the high temperature wear resistance of Ni-20% Cr detonation spray coating on IN718 substrate. Surface and Coatings Technology. 462, 129490, 1-13. https://doi.org/10.1016/j.surfcoat.2023.129490.
  • Shafranov, A.V., Morozov, E.A., Muratov, K.R., Ablyaz, T. R., Drozdov, A.A., Kornilov, A.A. & Lukin, E.V. (2021). Production of nickel–chromium coatings from powder by laser cladding. Russian Engineering Research. 41(5), 457-459. https://doi.org/10.3103/S1068798X21050208.
  • Chen, W.C., Teng, F.Y. & Hung, C.C. (2014). Characterization of Ni–Cr alloys using different casting techniques and molds. Materials Science and Engineering. C, 35, 231-238. https://doi.org/10.1016/j.msec.2013.11.014.
  • Yun, C.S., Hanawa, T., Hong, M.H., Min, B.K. & Kwon, T.Y. (2021). Biocompatibility of Ni–Cr alloys, with the same composition, prepared by two new digital manufacturing techniques. Materials Letters. 305, 130761, 1-4. https://doi.org/10.1016/j.matlet.2021.130761.
  • Karimihaghighi, R. & Naghizadeh, M. (2023). Effect of alloying elements on aqueous corrosion of nickel‐based alloys at high temperatures: A review. Materials and Corrosion. 74(8), 1246-1255. https://doi.org/10.1002/maco.202213705.
  • Zhang, X. (2024). Modification and characterisation of nickel-based alloy materials for ultra-supercritical power generation. Journal of Physics: Conference Series. 2808(1), 012005. DOI: 10.1088/1742-6596/2808/1/012005.
  • Tan, C., Krishnan, K. & Elumalai, N.K. (2024). Corrosion behaviour of heat-treated cold spray nickel chromium/chromium carbides. Metals. 14(10), 1153, 1-28. https://doi.org/10.3390/met14101153.
  • Umanskyi, O.P., Storozhenko, M.S., Baglyuk, G.A., Melnyk, O.V., Brazhevsky, V.P., Chernyshov, O.O., Terentiv, O.E., Gubin, Yu.V., Kostenko, O.D. & Martsenyuk, I. S. (2020). Structure and wear resistance of plasma-sprayed NiCrBSiC–TiCrC composite powder coatings. Powder Metallurgy and Metal Ceramics. 59, 434-444. https://doi.org/10.1007/s11106-020-00177-y.
  • Amanov, A. & Berkebile, S.P. (2023). Enhancement of sliding wear and scratch resistance of two thermally sprayed Cr-based coatings by ultrasonic nanocrystal surface modification. Wear. 512-513, 204555, 1-19. https://doi.org/10.1016/j.wear.2022.204555.
  • Tabatabaeian, A., Ghasemi, A.R., Shokrieh, M.M., Marzbanrad, B., Baraheni, M. & Fotouhi, M. (2022). Residual stress in engineering materials: a review. Advanced Engineering Materials. 24(3), 2100786, 1-28. https://doi.org/10.1002/adem.202100786.
  • Toboła, D. (2022). Influence of sequential surface treatment processes on tribological performance of vanadis 6 cold work tool steel. Wear. 488-489, 204106, 1-12. https://doi.org/10.1016/j.wear.2021.204106.
  • Kaimkuriya, A., Sethuraman, B. & Gupta, M. (2024). Effect of physical parameters on fatigue life of materials and alloys: A critical review. 12(7), 100. https://doi.org/10.3390/technologies12070100.
  • Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y. & Zhou, K. (2021). Recent progress on wear‐resistant materials: designs, properties, and applications. Advanced Science. 8(11), 2003739. DOI: 10.1002/advs.202003739.
  • Han, X., Zhang, Z., Wang, B., Thrush, S. J., Barber, G. C. & Qiu, F. (2022). Microstructures, compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel. Wear. 488, 204131. https://doi.org/10.1016/j.wear.2021.204131.
  • Janka, L., Berger, L. M., Norpoth, J., Trache, R., Thiele, S., Tomastik, C., Matikainen, V. & Vuoristo, P. (2018). Improving the high temperature abrasion resistance of thermally sprayed Cr3C2-NiCr coatings by WC addition. Surface and Coatings Technology. 337, 296-305. https://doi.org/10.1016/j.surfcoat.2018.01.035.
  • Wu, S., Wang, D., Tao, X., Wang, X., Zhang, R., Zhou, Z., Zhang, S., Wu, C., Sun, X., Zhou, Y. & Cui, C. (2024). Tempering temperature dependence on the microstructure, mechanical properties and wear behaviour of a novel high chromium cast iron. Tribology International. 197, 109831. https://doi.org/10.1016/j.triboint.2024.109831.
  • Sarac, M. F. & Dikici, B. (2019). Effect of heat treatment on wear and corrosion behavior of high chromium white cast iron. Materials Testing. 61(7), 659-666. https://doi.org/10.3139/120.111382.
  • Yu, Z., Li, L., Zhang, D., Shi, G., Yang, G., Xu, Z. & Zhang, Z. (2021). Study of cracking mechanism and wear resistance in laser cladding coating of Ni-based alloy. Chinese Journal of Mechanical Engineering. 34, 1-14. https://doi.org/10.1186/s10033-021-00599-8.
  • Han, X., Zhang, Z., Wang, B., Thrush, S. J., Barber, G. C., & Qiu, F. (2022). Microstructures, compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel. Wear. 488, 204131. https://doi.org/10.1016/j.wear.2021.204131.
  • Liu, Q., Chen, C., Zhang, M. & Wang, S. (2019). Effect of different heat treatments on the microstructural evolution and mechanical properties of Ni-Cr-Si alloy fabricated by laser additive manufacturing. Journal of Materials Engineering and Performance. 28, 4543-4555. https://doi.org/10.1007/s11665-019-04239-0.
  • Keskar, N., Krishna, K. M., Gupta, C., Singh, J. B. & Tewari, R. (2022). The effect of Cr content on the microstructural and textural evolution and the mechanical properties of Ni-Cr binary alloys. Materials Today Communications. 33, 104831. https://doi.org/10.1016/j.mtcomm.2022.104831.
  • Pramod, T., Sampathkumaran, P., Anand Kumar, S., Seetharamu, S., Nataraj, J. R., Prasad, R.V.S. (2023). Investigation of residual stress and elastic parameters affected due to variations in manganese content and cast section size in wear resistant high chromium irons. In International Conference on Processing and Fabrication of Advanced Materials, 6-8 September 2023 (pp. 323-339). https://doi.org/10.1007/978-981-97-5967-5_26.
  • Al-Rubaie, K. S. & Pohl, M. (2014). Heat treatment and two-body abrasion of Ni-Hard 4. W312(1-2), 21-28. https://doi.org/10.1016/j.wear.2014.01.013.
  • Rizov, B.L. (2017). Some results from the investigation of effects of heat treatment on properties of ni-hard cast irons. International Journal of Engineering Research and Development. 13(2), 30-35. e-ISSN: 2278-067X.
  • ASTM E 915. (1984). Standard Method for Verifying the Alignment of X-ray Diffraction Instrumentation for Residual Stress Measurement. Annual Book of ASTM Standards, 03.01, 809-812.
  • Mashetty, S., Sampathkumaran, P., Deshpande, S., Sirsgi, S. & Rao, M.V. (2023). The erosion phenomena affecting residual stress in nickel chromium alloyed irons. Journal of Southwest Jiaotong Universitry. 58(2), 845-857. ISSN: 0258-2724.
  • Lyu, Y.T., Ay, H., Huang, Y.C., Hung, T.P., Jang, K., Lee, R. T., Hong, Z.H. & Tseng, P.H. (2023). Prediction of surface residual stress in grinding process. The International Journal of Advanced Manufacturing Technology. 1-22. https://doi.org/10.21203/rs.3.rs-3047963/v1.
  • Grum, J., Zerovmk, P. (1997). Residual stresses in steels after heat treatments and grinding. WIT Press. DOI: 10.2495/SURF970041.
  • Xu, L., Wang, F., Li, M., Li, F., Wang, X., Jiang, T., ... & Wei, S. (2023). Fabrication and abrasive wear property of high chromium cast iron with high vanadium and high nitrogen content (HCCI-VN). Wear.  523, 204828. https://doi.org/10.1016/j.wear.2023.204828.
  • Tabrett, C.P. & Sare, I.R. (1997). The effect of heat treatment on the abrasion resistance of alloy white irons. Wear. 203-204, 206-219. https://doi.org/10.1016/S0043-1648(96)07390-5.
  • Pramod, T., Sampathkumaran, P., Seetharamu, S., Dube, N., Vergis, B.R., Kumar, R.K. & Ranganathaiah, C. (2022). Evaluation of corrosion rate and scratch resistance in chromium alloyed irons influenced by manganese addition and process parameters. In Recent Trends in Electrochemical Science and Technology: Proceedings of Papers Presented at NSEST-2020 and ECSIRM-2020 (pp. 53-66). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-7554-6_4.
  • Lindroos, M., Valtonen, K., Kemppainen, A., Laukkanen, A., Holmberg, K. & Kuokkala, V.T. (2015). Wear behavior and work hardening of high strength steels in high stress abrasion. Wear. 322-323, 32-40. https://doi.org/10.1016/j.wear.2014.10.018.
  • Pei, W., Zhang, Y., Yang, S., Li, X., & Zhao, A. (2022). Study of work-hardening behavior of high manganese steel during compression. Materials Research Express. 9(6), 066503, 1-8. DOI: 10.1088/2053-1591/ac6da4.
  • Sampathkumaran, P. & Seetharamu, S. (2005). Erosion and abrasion characteristics of high manganese chromium irons. Wear. 259(1-6), 70-77. https://doi.org/10.1016/j.wear.2005.03.001.
  • Soriano, C., Leunda, J., Lambarri, J., Navas, V.G. & Sanz, C. (2011). Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades. Applied Surface Science. 257(16), 7101-7106. https://doi.org/10.1016/j.apsusc.2011.03.059.
  • Weidner, A., Tirschler, W. & Blochwitz, C. (2005). Overstraining effects on the crack-opening displacement of microstructurally short cracks. Materials Science and Engineering: A, 390(1-2), 414-422. https://doi.org/10.1016/j.msea.2004.08.013.
  • Hutchings, I. & Shipway, P. (2017). Tribology: friction and wear of engineering materials. Butterworth-heinemann.
  • Sue, J.A. & Troue, H.H. (1991). High temperature erosion behavior of titanium nitride and zirconium nitride coatings. Surface and Coatings Technology. 49(1-3), 31-39. https://doi.org/10.1016/0257-8972(91)90027-T.
  • Sherman, A.J., Smith, G., Dean Baker, M.R., Richard Toth, M.R. (2001). Cermet tool and die materials from metal coated powders. In 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings (pp. 95-102). Hoboken, NJ, USA: John Wiley & Sons, Inc.. https://doi.org/10.1002/9780470294680.ch11.
  • Sahadevan, P., Pon Selvan, C., Lakshmikanthan, A., Bhaumik, A., Cuautle, A.F. (2024). Effect of printing process parameters on tensile strength and wear rate of 17-4PH Stainless Steel deposited using SLM process. Frattura ed Integrità Strutturale. 70, 157-176. https://doi.org/10.3221/IGF-ESIS.70.09.
  • Hatti, G., Lakshmikanthan, A. & Naveen, G.J. (2023). Microstructure characterization, mechanical and wear behavior of silicon carbide and neem leaf powder reinforced AL7075 alloy hybrid MMC’s. Frattura Ed Integrità Strutturale, 17(65). https://doi.org/10.3221/IGF-ESIS.65.07.
  • Girish Prasad, M., Vijay Kumar, S. & Avinash, L (2024). Evaluation of microstructure and mechanical properties of Al6005 MMCs reinforced with B4C via stir casting route and optimisation through ANOVA DOE technique. Advances in Materials and Processing Technologies. 11(1), 175-195. https://doi.org/10.1080/2374068X.2024.2306036.
Przejdź do artykułu

Autorzy i Afiliacje

Sandeep Mashetty A.
1
Sampathkumaran P.
2
Ranjitha P.
3
Chithirai Pon Selvan
4
ORCID: ORCID
Shridhar Deshpande C.
5
Avinash Lakshmikanthan
6
Manjunath Patel G.C.
7

  1. Department of Mechanical Engineering, LingarajAppa Engineering College, Bidar, Affiliated to VTU, Belagavi, Karnataka 585403, India
  2. Département of Mechanical Engineering, Sambhram Institute of Technology, BangaloreAffiliated to VTU, Belagavi, Karnataka, India
  3. Department of Mechanical Engineering, Dayananda Sagar College of Engineering, BangaloreAffiliated to VTU, Belagavi, Bangalore, Karnataka 560078, India
  4. School of Science and Engineering, Curtin University, Dubai, 345031, United Arab Emirates
  5. Department of Mechanical Engineering, Sri Venkateshwara College of Engineering, BengaluruAffiliated to VTU, Belagavi, Karnataka, India
  6. Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India
  7. PES Institute of Technology and Management, Shivamogga. Visvesvaraya Technological University, Belagavi, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper presents an analysis of artificial intelligence algorithms in the context of their applicability to the automatic analysis of microstructure images. In the example presented, reference is made to exemplary images of the microstructure of vermicular cast iron. A characteristic feature of this alloy is the shape of the graphite separations. The microstructure consists of elements that humans can learn to recognise quite simply. Developing an application that recognises ‘dark colour’ and ‘worm shape’ is no longer so straightforward. The determination of the ‘dark’ colour in the algorithm becomes problematic, because depending on the conditions under which the photo was taken (e.g. time: day/night), the actual intensity values are altered. A similar situation occurs in the determination of shape, which varies from case to case. Such a classification is very general and results in large differences between instances of the class. Even a term like ‘relatively large’ can change depending on the size of the graphite separation itself. A dark colour can be represented as a sudden change in image intensity, i.e. large values of the gradient modulus. The question arises: what happens if ‘dark’ can be more than one microcomponent, for example graphite and perlite. A good solution would be to define an associated set of features that would more precisely define just this component of the microstructure - that is, its shape, colour and surroundings. The paper uses the local feature paradigm to do this. Referring to the literature, it can be pointed out that [1] local features are referred to as non-small and specific parts of an image. Distinctive image features need to be distinguished in order to detect these places of interest. In this case, they are: edges, spots and ridges.
Przejdź do artykułu

Bibliografia

  • Kosa, E. (2012). Research on the structure of nitrided layers produced on EN-GJL 250 cast iron under glow discharge conditions. Engineering diploma thesis, Warsaw University of Technology, Faculty of Materials Engineering. (in Polish).
  • Szpak, Ł. (2014). Image classification based on the author's hypsometric representation. Master's thesis, Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Computer Science. (in Polish).
  • de Albuquerque, V.H.C., Cortez, P.C., de Alexandria, A.R. & Manuel, J.R.S. (2008). A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network. Nondestructive Testing and Evaluation. 23(94), 273-283. https://doi.org/10.1080/10589750802258986.
  • Han, Y., Lai, C., Wang, B. & Gu, H. (2019). Segmenting images with complex textures by using hybrid algorithm. Journal of Electronic Imaging. 28(1), 013030. DOI: 10.1117/1.JEI.28.1.013030.
  • Fotos, G., Campbell, A., Murray, P. & Yakushina, E. (2023). Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentation. Journal of Materials Science. 58(36), 14390-14410. https://doi.org/10.1007/s10853-023-08901-w.
  • Azlan Suhaimi, M., Park, K.H., Sharif, S., Kim, D.W. Saladin Mohruni, A. (2017). Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron. In MATEC Web of Conferences, 7-9 June 2017 (pp. 1-7). DOI: 10.1051/MATECCONF/201710103016.
  • Zhu, C. & Zhang, A. (2007). Experimental study on fracture toughness of vermicular cast iron. Journal of Mechanical Strength. 29(2), 310-314.
  • Guzik, P. (2014). Methods of searching for characteristic points and their features. Engineering diploma thesis, Warsaw University of Technology Faculty of Electronics and Information Technology Institute of Computer Science. (in Polish).
  • Nowik, A. (2014). Local descriptors using reduced binary histogram in similar image retrieval. Warsaw University of Technology, Faculty of Electronics and Information Technology Institute of Computer Science. (in Polish).
  • Function Documentation. (2023). Color Space Conversions. Retrieved November 25, 2023, from https://docs.opencv.org/3.4/d8/d01/group__imgproc__colo r__conversions.html#ga397ae87e1288a81d2363b61574eb 8cab
  • Color conversions. (2023) Retrieved November 23, 2023, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
  • Smotking Images: Gaussian Blurring. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
  • Morphological Transformations: Closing. (2023). Retrieved November 23, 2023, from https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
  • Structural Analysis and ShapeDescriptors: findContours. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
  • Arithmetic Operations on Images: Bitwise Operations. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d0/d86/tutorial_py_image_arithmetics.html
  • Image Thresholding: Otsu's Binarization. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
  • About Keras: Keras & TensorFlow 2. (2023). Retrieved November 26, 2023, from https://keras.io/about/tf.keras.preprocessing.image.ImageDataGenerator, Retrieved 2023-11-26, https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator#used-in-the-notebooks
  • fchollet, The Sequential model. (2023). Retrieved November 26, 2023, from https://keras.io/guides/sequential_model/
  • Conv2D layer. (2023). Retrieved November 26, 2023, from https://keras.io/api/layers/convolution_layers/convolution2d/
  • MaxPooling2D layer. (2023). Retrieved November 23, 2023, from https://keras.io/api/layers/pooling_layers/max_pooling2d/
  • Flatten layer. (2023). Retrieved November 27, 2023, from https://keras.io/api/layers/reshaping_layers/flatten/
  • Dense layer. (2023). Retrieved November 27, 2023, from https://keras.io/api/layers/core_layers/dense/
  • Layer activation functions. (2023). Retrieved November 26, 2023, from, https://keras.io/api/layers/activations/#sigmoid-function
  • (2023). Retrieved November 26, 2023, from https://keras.io/api/optimizers/adam/
Przejdź do artykułu

Autorzy i Afiliacje

U. Janiszewska
1
Ł. Marcjan
1
S. Gajoch
1
K. Jaśkowiec
2
ORCID: ORCID
A. Bitka
2
ORCID: ORCID
M. Małysza
1
ORCID: ORCID
D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland
  2. Łukasiewicz Research Network-Krakow Institute of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The composition of gases emitted from commercial resin-based binders, under the influence of high temperatures of liquid metal (up to 1500°C), is determined in this summary with a view to assessing the potential harmfulness of these gases to the environment and workers. Mesaurements have been carried out using coupled analytical techniques, such as e.g. HS-GC/MS (Headspace/Gas Chromatography/Mass Spectrometry) or TG/DCS/FTIR (simultaneous Thermogravimetry/Differential Scanning Calorimetry coupled with Fourier Transform Infrared spectroscopy), which allow the simulation of conditions during casting production. A review of the existing literature indicates that the thermal decomposition of commercial resin-based binders is typically characterized by a multi-step process involving a series of sequential reactions, depending on the type of atmosphere. The process of decomposition has been observed to result in the release of various compounds, including water, carbon monoxide, carbon dioxide, phenol, BTEX (benzene, toluene, ethylbenzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons) groups and others, from the tested binders. The composition and quantity of these gases have been found to be contingent on the type of binder, the temperature, and the heating rate of the sample. The decomposition of the binder has been demonstrated to occur through different mechanisms, which depending on the heating rate of the samples.
Przejdź do artykułu

Bibliografia

  • Berdnikova, P.V., Zhizhina, E.G. & Pai, Z.P. (2021). Phenol-formaldehyde resins: properties, fields of application, and methods of synthesis. Catalysis in Industry. 13, 119-124. https://doi.org/10.1134/S2070050421020033.
  • Alieva, A. P. (2021). Prospects for obtaining phenol-formaldehyde oligomers. Plasticheskie massy, (9-10), 22-26.
  • Roczniak, A. (2019). Research of the influence of temperature and type of atmosphere on the release of chemical compounds from mold sand Alphaset technology. (in Polish). Kraków: AGH University of Science and Technology.
  • Holtzer, M. & Kmita, A. (2020). Mold and core sands in metalcasting: chemistry and ecology. Sustainable Development.219-241.
  • Ghosh, D.K. (2019). Comparison of molding sand technology between alphaset (APNB) and furan (FNB). Archives of Foundry Engineering. 19(4), 11-20. DOI: 24425/afe.2019.129623.
  • Kmita, A., Roczniak, A. & Holtzer, M. (2016). The identification of pyrolysis products of the Alphaset binder with gas chromatography / mass spectrometry. Metalurgija. 56(1-2), 21-24.
  • Kmita, A., Benko, A., Roczniak, A., Fraczek-Szczypta, A. & Holtzer, M. (2018). Pyrolysis of organic ester cured alkaline phenolic resin: Identification of products. Journal of Analytical and Applied Pyrolysis. 129, 6-12. https://doi.org/10.1016/j.jaap.2017.12.014.
  • Kmita, A., Benko, A., Roczniak, A., & Holtzer, M. (2020). Evaluation of pyrolysis and combustion products from foundry binders: potential hazards in metal casting. Journal of Thermal Analysis and Calorimetry. 140, 2347-2356. https://doi.org/10.1007/s10973-019-09031-9.
  • Scarbel, P., Bats, C.E. & Griffin, J. (2006). Effect of mold and binder formulation on gas evolution when pouring aluminum casting. AFS Transactions. 114, 435-445.
  • Lytle, C.A., Bertsch, W. & Mc Kinley, M.D. (1998). Determination of thermal decomposition product from phenolic urethane resin by pyrolysis – gas chromatography –mass spectrometry. Journal of High Resolution Chromatography. 21(2), 128-132. ISSN: 0935-6304.
  • Kmita, A. (2021). Thermal decomposition of nanocomposite foundry binder based on phenol-formaldehyde resin with zinc ferrite. Kraków: Wydawnictwa AGH. (in Polish).
  • Laramee, R. & Canfield, A. (1972). Carbon/Carbon Composites—Solid Rocket Nozzle Material Processing, Design, and Testing. In H.T. Corten (Eds.), Composite Materials: Testing and Design (Second Conference). West Conshohocken, PA 19428-2959: ASTM International. https://doi.org/10.1520/STP27772S.
  • Zhao, Yong, Yan, N. & Feng, M.W. (2013). Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta. 555(10), 46-52. https://doi.org/10.1016/j.tca.2012.12.002.
  • Gardziella, A., Pilato, L.A., Knop, A. (2000). Phenolic resins. Chemistry, applications, standarizations, safety and ecology. Springer, Verlag.
  • Wang, S., Xing, X., Li, J. & Jing, X. (2018). Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins. Applied Surface Science. 428, 912-923. https://doi.org/10.1016/j.apsusc.2017.09.213.
  • Chiantore, O., Lazzari, M. & Fontana, M. (1995). Thermal decomposition of phenol-formaldehyde foundry resins. International Journal of Polymer Analysis and Characterization. 1(2), 119-130. https://doi.org/10.1080/10236669508233867.
  • Johnston, P. K., Doyle, E. & Orzel, R. A. (1988). Phenolics: a literature review of thermal decomposition products and toxicity. Journal of the American College of Toxicology. 7(2), 201-220.
  • He, G.B. & Riedl, B. (2003). Phenol –urea-formaldehyde cocondensed resol resins. Their synthesis, curing kinetics, and network properties. Journal of Polymer Science, Part B. 41(16), 1929-1938. https://doi.org/10.1002/polb.10558.
  • Fyfe, C.A., McKinnon, M.S., Rudin, A. & Tchir, W.J. (1983). Investigation of the mechanism of the thermal decomposition of cured phenolic resins by high-resolution carbon-13 CP/MAS solid-state NMR spectroscopy. Macromolecules. 16(7), 1216-1219.
  • Wang, J., Jiang, N. & Jiang, H. (2009). Effect of the evolution of phenol-formaldehyde resin on the high-temperature bonding. International Journal of Adhesion and Adhesives. 29(7), 718-723. https://doi.org/10.1016/j.ijadhadh.2009.03.001.
  • Mustata, F., Tudorachi, N. & Bicu, I. (2015). The kinetic study and thermal characterization of epoxy resins crosslinked with amino carboxylic acids. Journal of Analytical and Applied Pyrolysis. 112, 180-191. https://doi.org/10.1016/j.jaap.2015.01.030.
  • Visakh, P.M., Arao, Y. (2015). Thermal degradation of polymer blends, composites and nanocomposites.
  • Rao, M.P.R., Rao, B.C. & Rajan, R.S.G. (1998). Thermal degradation kinetics of phenol—crotonaldehyde resins. Polymer Degradation and Stability. 61(2), 283-288. https://doi.org/10.1016/S0141-3910(97)00210-3.
  • Kmita, A., Knauer, W., Holtzer, M., Hodor, K., Piwowarski, G., Roczniak, A. & Górecki, K. (2019). The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Applied Thermal Engineering. 156, 263-275. https://doi.org/10.1016/j.applthermaleng.2019.03.093.
  • Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica. 52(3), 238-244.
  • Friedman, H. (1969). New methods for evaluating kinetic parameters from thermal analysis data. Journal of Polymer Science Part B: Polymers Letters. 7, 41-46. https://doi.org/10.1002/pol.1969.110070109.
  • Levchik, S.V. & Weil, E.D. (2004). Thermal decomposition, combustion and flame-retardancy of epoxy resins - A review of the recent literature. Polymer International. 53(12), 1901-1929. https://doi.org/10.1002/pi.1473.
  • Holtzer, M., Dańko, R., Dańko, J., Kubecki, M., Żymankowska-Kumon, S., Bobrowski, A., Spiewok, W. (2013). The assesment of harmfulness of binding materials used for a new generation of core and molding sands. AKAPIT, Kraków (in Polish).
  • Holtzer, M, Kmita, A. & Dańko, R.. (2015). The gases generation during thermal decomposition of moulding sands - comparison of inorganic and organic binders. Slévárenství. 63(7-8), 246-247.
  • Trinowski, D. M. (2016). Comparing moulding and core trends in the US and EU casting industries. Huttenes-Albertus Chemische Werke GmbH, 1-13.
  • Kmita, A., Fischer, C., Hodor, K., Holtzer, M. & Roczniak, A. (2018). Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry-gas chromatography-mass spectrometry (TG-GC-MS). Arabian Journal of Chemistry. 11(3), 380-387. https://doi.org/10.1016/j.arabjc.2016.11.003.
  • Holtzer, M., Dańko, R. & Kmita, A. (2016). Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment. Water, Air and Soil Pollution. 227(1), 1-12. https://doi.org/10.1007/s11270-015-2707-9.
  • Holtzer, M., Dańko, R., Górny, M., Kmita, A. (2015). The mold/casting interface phenomena and their influence on the surface quality of casting. Cracow University of Technology Publisher.
  • Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M. & Roczniak, A. (2020). Environmental impact of the reclaimed sand addition to molding sand with furan and phenol-formaldehyde resin—a comparison. Materials. 13(19). 4395, 1-12. https://doi.org/10.3390/ma13194395.
  • Holtzer, M., Dańko, R., Piasny, S., Kubecki, M., Drożyński, D., Roczniak, A., Skrzyński, M. & Kmita, A. (2021). Research on the release of dangerous compounds from the BTEX and PAHs groups in industrial casting conditions. Materials. 14(10), 2581. https://doi.org/10.3390/ma14102581.
  • Report (2021). Phenolic Resin Market. Retrieved October 18, 2024, from https://www.researchandmarkets.com/reports/4053239/phenolic-resin-market-by-typeresol-novolac.
  • EPA United States Environmental Protection Agency. (2018). What are hazardous air pollutants? Retrieved October 17, 2024, from https://www.epa.gov/haps/what-are-hazardous-air-pollutants.
  • Giese, S.R, Shepard, A. (2014). Understanding emissions characteristics of a foundry sand binder. In 71st World Foundry Congress, 19-21 May 2014 (pp. 934-942). Bilbao, Spain.
  • Lefebvre, J., Mamleev, V., Le Bras, M. & Bourbigot, S. (2005). Kinetic analysis of pyrolysis of cross-linked polymers. Polymer Degradation and Stability. 88(1), 85-91. https://doi.org/10.1016/j.polymdegradstab.2004.02.020.
  • Bouajila, J., Raffin, G., Alamercery, S., Waton, H., Sanglar, C. & Grenier-Loustalot, M.F. (2003). Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polymers and Polymer Composites. 11(5), 345-357. https://doi.org/10.1177/096739110301100501.
  • Giese, S.R., Roorda, S.C. & Patersson, M.A. (2009). Thermal analysis of phenolic urethane binder and correlated properties. AFS Transactions. 117, 355-366.
  • Gao Z, Lang X, Chen S, Zhao C (2021). Mini-review on the synthesis of lignin-based phenolic resin. Energy & Fuels. 35, 22, 18385-18395.
  • Wan, P., Zhou, J., Li, Y., Yin, Y., Huang, D., Ji, X. & Shen, X. (2019). Experimental study on gas evolution process of binders in foundry industry based on TG-MS. Procedia Manufacturing. 37, 311-318. https://doi.org/10.1016/j.promfg.2019.12.053.
  • Qian, X., Wan, P., Yin, Y., Qi, Y., Ji, X., Shen, X., Y.Li & Zhou, J. (2022). Gas evolution characteristics of three kinds of no-bake resin-bonded sands for foundry in production. China Foundry. 19(2), 140-148. https://doi.org/10.1007/s41230-022-1031-4.
  • Lewandowski, J.L. (1997). Materials for foundry moulds. (in Polish)
  • Pielichowski, K. (2013). Application of thermal analysis methods in the study of organic materials. Retrieved October 20, 2024, from https://Pg.Gda.Pl/Info/Polimery/Files/2013/10/Im-Swp-l-002h.pdf. (in Polish).
  • Pielichowski, K., Njuguna, J., Majka, T.M. (2022). Thermal degradation of polymeric materials.
  • Schnabel, W. (1981). Polymer degradation: principles and practical applications. Walter de Gruyter GmbH & Co KG.
  • Fink, J. K. (2017). Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. William Andrew.
  • Rabek, J.F. (2017). Modern knowledge about polymers. Wydawnictwo Naukowe PWN. (in Polish).
  • Bortel, E. (1994). Introduction to Polymer Chemistry. UJ, Kraków (in Polish).
  • Pielichowski, J., Sobczak, J., Żółkiewicz, Z., Hebda, E. & Karwiński, A. (2011). The thermal analysis of polystyrene foundry model. Transaction of the Foundry Research Institute. 1, 15-21. (in Polish).
  • Florjańczyk, Z., Penczek, S. (2002). Polymer Chemistry. Volume II Basic Synthetic Polymers and Their Applications. Oficyna Wydawnicza Politechniki Warszawskiej. (in Polish).
  • Shuklaa, S.K., Srivastavaa, D. (2001). Epoxy/Resole blends-A study of its degradation kinetics. Indian Journal of Chemical Technology. 8, 357-361.
  • Yangfei, C., Zhiqin, C., Shaoyi, X. & Hongbo, L. (2008). A novel thermal degradation mechanism of phenol-formaldehyde type resine. Thermochimi Acta. 476(1-2), 39-43. https://doi.org/10.1016/j.tca.2008.04.013.
  • Chaussoy, N., Brandt, D. & Gérard, J.F. (2023). Formaldehyde-free and phenol-free non-toxic phenolic resins with high thermostability. ACS Applied Polymer Materials. 5(7), 5630-5640.
  • Wang, C., Wu, Y., Liu, Q. & Wang, F. (2011). Analysis of the behaviour of pollutant gas emissions during wheat straw/coal cofiring by TG-FTIR. Fuell Process Technology. 92(5), 1037-1041. https://doi.org/10.1016/j.fuproc.2010.12.029.
  • Chai, Y., Liu, J., Zhao, Y. & Yan, N. (2016). Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds. Industrial & Engineering Chemistry Research. 55(37), 9840-9850.
  • McKinley, M.D., Jefcoat, I.A., Herz, W.J. & Frederick, C. (1993). Air emissions from foundries: a current survey of literature, supplies and foundrymen. American Foundry Society Transactions. 101, 979-990.
  • Liu, Y., Xie, Q., Li, X., Tian, F., Qiao, X., Chen, J. & Ding, W. (2019). Profile and source apportionment of volatile organic compounds from a complex industrial park. Environmental Science: Processes & Impacts. 21, 9-18. DOI: 10.1039/C8EM00363G.
  • Major-Gabryś, K. (2016). Environmentally friendly foundry moulding and core sands. Archives of Foundry Engineering. Habilitation dissertation.(in Polish).
  • Jiang, H., Wang, J., Wu, S., Wang, B. & Wang, Z. (2010). Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 48(2), 352-358. https://doi.org/10.1016/j.carbon.2009.09.036.
  • Wang, J., Jiang, H. & Jiang, N. (2009). Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta. 496(1-2), 136-142. https://doi.org/10.1016/j.tca.2009.07.012.
  • Grochowalski, A., Lassen, C., Holtzer, M., Sadowski, M. & Hudyma, T. (2007). Determination of PCDDs, PCDFs, PCBs and HCB emissions from the metallurgical sector in Poland. Environmental Science and Pollution Research-International. 14, 326-332. https://doi.org/10.1065/espr2006.05.303.
  • Holtzer, M, Kmita, A. & Roczniak, A. (2014). New more friendly furfuryl resins. Archives of Foundry Engineering, 14(4SI), 47-50.
  • Alonso, M.V., Oliet, M., Domínguez, J.C., Rojo, E. & Rodríguez, F. (2011). Thermal degradation of lignin-phenol-formaldehyde and phenol-formaldehyde resol resins : Structural changes, thermal stability, and kinetics. Journal of Thermal Analysis and Calorimetry. 105(1), 349-356. https://doi.org/10.1007/s10973-011-1405-0.
  • Holtzer, M. (2015). Influence of the addition of the reclaimed sand on the quality of castings and harmfulness of the new generation core and moulding sands. (in Polish).
  • Kubecki, M. (2016). Determination of selected dangerous air pollutants, generated in the process of thermal decomposition of molding sands with furan resins. AGH University of Science and Technology in Krakow. (in Polish).
  • Major-Gabryś, K., Grabarczyk, A. & Dobosz, S.M. (2018). Modification of foundry binders by biodegradable material. Archives of Foundry Engineering. 18, 31-34. DOI: 10.24425/122498.
  • Kmita, A. & Hutera, B. (2012). Effect of water glass modification on its viscosity and wettability of quartz grains. Archives of Foundry Engineering. 12(3). DOI: 10.2478/v10266-012-0082-1.
  • Kmita, A. & Roczniak, A. (2017). Nanocomposites based on water glass matrix as a foundry binder: chosen physicochemical properties. Archives of Foundry Engineering. 17(1), 93-98. DOI: 10.1515/afe-2017-0017.
  • Kmita, A., Drożyński, D., Roczniak, A., Gajewska, M., Marciszko, M., Górecki, K. & Baczmański, A. (2018). Adhesive hybrid nanocomposites for potential applications in moulding sands technology. Part B, Engineering. 146, 124-131. https://doi.org/10.1016/j.compositesb.2018.03.046.
  • Kmita, A. & Hutera, B. (2013). Water glass modification and its impact on the mechanical properties of moulding sands. Archives of Foundry Engineering. 13(2), 81-84.
  • Kusch, P., Knupp, G., Fink, W., Schroeder-Obst, D., Obst, V. & Steinhaus, J. (2014). Application of pyrolysis–gas chromatography–mass spectrometry for the identification of polymeric materials. LCGC North America. 32(3), 20-217.
  • Chuang,, Lei, P., Zhen-hai, S., Bing-liang, L & Ke-Zhi, L. (2019). Preparation, thermal stability and deflection of a density gradient thermally-conductive carbon foam material derived from phenolic resin. Results in Physics. 14, 102448, 1-12. https://doi.org/10.1016/j.rinp.2019.102448.
  • Li, X.H., Meng, Y.Z., Zhu, Q. & Tjong, S.C. (2003). Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques. Polymer Degradation and Stability. 81(1), 157-165. https://doi.org/10.1016/S0141-3910(03)00085-5.
  • Sobera, M. & Hetper, J. (2003). Pyrolysis – gas chromatography – mass spectrometry of cured phenolic resins. Journal of Chromatography A. 993(1-2), 131-133. https://doi.org/10.1016/S0021-9673(03)00388-1.
  • Chen, Y., Chen, Z., Xiao, S. & Liu, H. (2008). A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochimica Acta. 476(1-2), 39-43. https://doi.org/10.1016/j.tca.2008.04.013.
  • Testoni, F. & Frisina, G. (1990). Qualitative analysis of a commercially available phenol—formaldehyde resin, by static and dynamic headspace analysis using a mass-selective detector. Journal of Chromatography A. 509(1), 101-109. https://doi.org/10.1016/S0021-9673(01)93242-X.
  • Phillips, O., Schwartz, J.M. & Kohl, P.A. (2016). Thermal decomposition of poly(propylene carbonate): end-capping, additives, and solvent effects. Polymer Degradation and Stability. 125, 129-139. https://doi.org/10.1016/j.polymdegradstab.2016.01.004.
  • Lu, X.L., Zhu, Q. & Meng, Y.Z. (2005). Kinetic analysis of thermal decomposition of poly(propylene carbonate). Polymer Degradation and Stability. 89(2), 282-288. https://doi.org/10.1016/j.polymdegradstab.2004.12.025.
  • Laino, T., Tuma, C., Moor, P., Martin, E., Stolz, S. & Curioni, A. (2012). Mechanisms of propylene glycol and triacetin pyrolysis. The Journal of Physical Chemistry A. 116(18), 4602-4609.
  • Zhao, Y., Yan, N. & Feng, M.W. (2013). Thermal degradation characteristic of phenol – formaldehyde resins derived from betele infested pine barks. Thermochimica Acta. 555, 46-52. https://doi.org/10.1016/j.tca.2012.12.002.
  • Wang, Yujue, Cannon, F. S., Salama, M., Goudzwaard, J. & Furness, J.C. (2007). Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environmental Science and Technology, 41(22), 7922-7927.
  • Wang, Y., Zhang, Y., Su, L., Li, X., Duan, L., Wang, C. & Huang, T. (2011). Hazardous air pollutant formation from pyrolysis of typical chinese casting materials. Environmental Science & Technology. 45(15), 6539-6544.
  • Tiedje, N., Crepaz, R., Eggert, T. & Bey, N. (2010). Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds. Journal of Environmental Science and Health Part A. 45(14), 1866-1876. https://doi.org/10.1080/10934529.2010.520595.
  • Strzemiecka, B., Zięba-Palus, J., Voelkel, T., Lachowicz, T. & Socha, E. (2016). Examination of the chemical changes in cured phenol-formaldehyde resines during storage. Journal of Chromatography A. 1441, 106-115. https://doi.org/10.1016/j.chroma.2016.02.051.
  • Dungan, R.S. & Reeves, J.B. (2005). Pyrolysis of foundry sand resins: a determination of organic products by MS. Journal of Environmental Science and Health. 40, 1557-1567. https://doi.org/10.1081/ESE-200060630.
  • Hunter, B. (2001). Reference document on best available techniques in the ferrous metals processing industry. Integrated Pollution Prevention and Control (IPPC).
  • Bats, C. E., & Scott, W. D. (1977). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality. AFS Transactions. 85(3), 209–226.
  • Matsushita, T., Sundaram, D., Belov, I., Dioszegi, A. (2024). Kinetic model for the decomposition rate of the binder in a foundry sand application. Archives of Foundry Engineering. 24(3), 43-49. https://doi.org/24425/afe.2024.151289.
  • European Commission. (2015). Best Available Techniques
    (BAT) Reference Document for the Propuction of pulp, paper and board. Industrial Emission Directive 2010/75/EU (Intergated Pollution Prevention and Control).
    https://doi.org/10.2791/370629.
  • Huang, R., Zhang, B. & Tang, Y. (2016). Application conditions for ester cured alkaline phenolic resin sand. China Foundry. 13(4), 231-237. https://doi.org/10.1007/s41230-016-6022-x.
  • Kmita, A., Drozyński, D., Mocek, J., Roczniak, A., Zych, J. & Holtzer, M. (2016). Gas evolution rates of graphite protective coatings in dependence on the applied solvent and kind of atmosphere. Archives of Metallurgy and Materials. 61(4), 2129-2134. DOI: 10.1515/amm-2016-0284.
  • Sobczak, J. (2013). Founder’s Guide. Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich. (in Polish).
  • Dańko, J., Dańko, R., Łucarz, M. (2007). Processes and devices for reclamation of used moulding sands.
  • Roczniak, A., Kmita, A. (2017). Thermosetting polymers used in foundry to bond the mineral matrix and their impact on the environment. In Z. Czyż & K. Maciąg (Eds.), Current technologies of material technology. Wydawnictwo Naukowe TYGIEL. (in Polish).
  • Roczniak, A., Holtzer, M. & Kmita, A. (2018). Research of emission of commercial binders used in ALPHASET technology - Estimated quantitative analysis. Archives of Foundry Engineering. 18(1), 109-114. DOI: 10.24425/118821.
  • Chen, Z.Q., Chen, Y.F. & Liu, H.B. (2013). Pyrolysis of phenolic resin by TG-MS and FTIR analysis. Advanced Materials Research. 631-632, 104-109. https://doi.org/10.4028/www.scientific.net/AMR.631-632.104.
  • Yu, Z.L, Gao, Y.C., Qin, B, Ma, Z.Y. & Yu, S.H (2024). Revitalizing traditional phenolic resin toward a versatile platform for advanced materials. Accounts of Materials Research. 5(2), 146-159.
  • Liang, B., Wang, J., Hu, J., Li, C., Li, R., Liu, Y., Zeng, K., & Yang, G. (2019). TG-MS-FTIR study on pyrolysis behavior of phthalonitrile resin. Polymer Degradation and Stability. 169, 108954, 1-8. https://doi.org/10.1016/j.polymdegradstab.2019.108954.
  • Giese, S.R, Roorda, S.C. & Patersson, M.A. (2009). Thermal analysis of phenolic urethane binder and correlation properties. American Foundry Society Transactions. 117, 355-366.
  • Otero, M., Díez, C., Calvo, L.F., García, A.I. & Morán, A. (2002). Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass and Bioenergy. 22(4), 319-329. https://doi.org/10.1016/S0961-9534(02)00012-0.
  • Wang, Y.X., Wang, C.G., Wu, J.W. & Jing, M. (2007). High-temperature DSC study of polyacrylonitrile precursors during their conversion to carbon fibers. Journal of Applied Polymer Science. 106(3), 1787-1792. https://doi.org/10.1002/app.26862.
  • Wang, S., Xing, X., Wang, Y., Wang, W. & Jing, X. (2017). Influence of poly (dihydroxybiphenyl borate) on the curing behaviour and thermal pyrolysis mechanism of phenolic resin. Polymer Degradation and Stability. 144, 378-391. https://doi.org/10.1016/j.polymdegradstab.2017.08.034.
  • Shuttleworth, P.S., Budarin, V., White, R.J., V.M., G., Luque, R. & Clark, J.H. (2013). Molecural- level understanding of the carbonization of polysaccharides. Chemistry – A European Journal. 19, 9351-9357. https://doi.org/10.1002/chem.201300825.
  • Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry. 29(11), 1702-1706. https://doi.org/10.1021/ac60131a045.
  • Akahira, T. & Sunose, T. (1971). Joint Convention of Four Electtical Institutes. Research Reports of Chiba Institute of Technology. 16, 22-31.
Przejdź do artykułu

Autorzy i Afiliacje

A. Kmita
1
ORCID: ORCID

  1. AGH University of Krakow, Academic Centre for Materials and Nanotechnology,al. A. Mickiewicza 30, 30-059 Krakow, Poland

Instrukcja dla autorów

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Zasady etyki publikacyjnej


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Procedura recenzowania


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Recenzenci

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji