Applied sciences

Gospodarka Surowcami Mineralnymi - Mineral Resources Management

Content

Gospodarka Surowcami Mineralnymi - Mineral Resources Management | 2021 | vol. 37 | No 3

Download PDF Download RIS Download Bibtex

Abstract

The observation of trends in the demand for minerals is of fundamental importance in the long- -term assessment of prospects for economic development in Poland.
From among 148 minerals analyzed, 42 minerals are indicated as key minerals for the country’s economy, of which 22 were recognized as deficit minerals. These minerals have been the subject of this paper.
For each of these minerals the forecasts of demand by the years 2030, 2040 and 2050 have been made taking the current trends in domestic economy and premises for the development of industries that are main users of these minerals into account. The most promising prospects for growth of domestic demand – with at least a two-fold increase by 2050 – have been determined for manganese dioxide, metallic: magnesium, nickel, silicon, as well as talc and steatite, while an increase by at least 50% have been anticipated for metallic aluminum, tin, metallic manganese, and elemental phosphorus. For natural gas and crude oil growing tendencies have also been predicted, but only by 2030. On the other hand, the most probable decline in domestic demand by 2050 may be foreseen for iron ores and concentrates, bauxite, metallic tungsten, magnesite and magnesia, as well as for crude oil and natural gas, especially after 2040.
It seems inevitable that the deficit in the foreign trade of minerals will continue to deepen in the coming years. By 2030 this will mainly result from the growing importation of crude oil and natural gas, but beyond – by 2050 – further deepening in the trade deficit will be related to the growing importation of many metals as well as of some industrial minerals. After 2040, the negative trade balance can be mitigated by a possible decrease in foreign deliveries of hydrocarbons and iron ores and concentrates.
Go to article

Bibliography


Galos et al. 2020 – Galos, K., Burkowicz, A., Czerw, H., Figarska-Warchoł, B., Gałaś, A., Guzik, K., Kamyk, J., Kot- -Niewiadomska, A., Lewicka, E. and Szlugaj, J. 2020. Assessment of current and future demand of the domestic economy for mineral raw materials in the perspective of 2025, 2030. 2040 and 2050 (Ocena obecnego oraz przyszłego zapotrzebowania gospodarki krajowej na surowce w perspektywie 2025, 2030, 2040 i 2050 roku). Commissioned by the PIG-PIB (unpublished typescript in Polish).

Galos, K. and Lewicka, E. 2016. Assessment of importance of non-energy mineral raw materials for the domestic economy in the years 2005–2014 (Ocena znaczenia surowców mineralnych nieenergetycznych dla gospodarki krajowej w latach 2005–2014). Zeszyty Naukowe IGSMiE PAN 92, pp. 7–36 (in Polish).

Galos et al. 2021 – Galos, K., Lewicka, E., Burkowicz, A., Guzik, K., Kot-Niewiadomska, A., Kamyk, J. and Szlugaj, J. 2021. Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland. Resources Policy 70, pp. 101900–101913.

Galos, K. and Smakowski, T. 2014. Preliminary proposal of methodology of identification of key minerals for the Polish economy (Wstępna propozycja metodyki identyfikacji surowców kluczowych dla polskiej gospodarki). Zeszyty Naukowe IGSMiE PAN 88, pp. 59–79 (in Polish).

Galos, K. and Szamałek, K. 2011. Assessment of the non-energy minerals security of Poland (Ocena bezpieczeństwa surowcowego Polski w zakresie surowców nieenergetycznych). Zeszyty Naukowe IGSMiE PAN 81, pp. 37–58 (in Polish).

Kulczycka et al. 2016 – Kulczycka, J., Pietrzyk-Sokulska, E., Koneczna, R., Galos, K. and Lewicka, E. 2016. Key minerals for the Polish economy (Surowce kluczowe dla polskiej gospodarki) Kraków: MERRI PAS, 164 pp. (in Polish).

Lewicka, E. and Burkowicz, A. 2018. Assessing current state of coverage the mineral raw materials demand of the domestic economy (Ocena obecnego stanu pokrycia potrzeb surowcowych gospodarki krajowej). Przegląd Geologiczny 66(3), pp. 144–152 (in Polish).

Lewicka et al. 2021 – Lewicka, E., Guzik, K. and Galos, K. 2021. On the possibilities of critical raw materials production from the EU’s primary sources. Resources 10(5), pp. 50–71.

Ministry of Climate and Environment 2021. Mineral Policy of Poland. Project from 6 April 2021 (Polityka surowcowa państwa. Projekt z 6 kwietnia 2021 r.), Warszawa (in Polish).

Nieć et al. 2014 – Nieć, M., Galos, K. and Szamałek, K. 2014. Main challenges of mineral resources policy of Poland. Resources Policy 42, pp. 93–103.

Radwanek-Bąk, B. 2016. Designation of key raw materials for the Polish economy (Określenie surowców kluczowych dla polskiej gospodarki). Zeszyty Naukowe IGSMiE PAN 96, pp. 241–254 (in Polish).

Radwanek-Bąk et al. 2018 – Radwanek-Bąk, B., Galos, K. and Nieć, M. 2018. Key, strategic and critical minerals for the Polish economy (Surowce kluczowe, strategiczne i krytyczne dla polskiej gospodarki). Przegląd Geologiczny 66(3), pp. 153–159 (in Polish).

Smakowski et al. 2015 – Smakowski, T., Galos, K. and Lewicka, E. eds. 2015. Balance of the mineral economy of Poland and the world 2013 (Bilans gospodarki surowcami mineralnymi Polski i świata 2013). Warszawa: PIG-PIB, 1169 pp. (in Polish).

Statistics Poland (GUS). Statistics of the production and foreign trade (as well as selected data on consumption) of mineral raw materials in Poland in the years 2000–2018.

Szuflicki et al. 2021 – Szuflicki, M., Malon, A. and Tymiński, M. eds. 2021. Balance of mineral raw materials deposits in Poland as of 31 XII 2020 (Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2020 r.). Warszawa: PIG-PIB, 508 pp. (in Polish).
Go to article

Authors and Affiliations

Krzysztof Galos
1
ORCID: ORCID
Ewa Danuta Lewicka
1
ORCID: ORCID
Jarosław Kamyk
1
ORCID: ORCID
Jarosław Szlugaj
1
ORCID: ORCID
Hubert Czerw
1
ORCID: ORCID
Anna Burkowicz
1
ORCID: ORCID
Alicja Kot-Niewiadomska
1
ORCID: ORCID
Katarzyna Guzik
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The raw material economy determines energy security for individual countries in the world. Coal is one of the most important energy carriers for electricity production and heat generation. World market trends of fossil raw materials such as hard coal and lignite were presented. In the European Union a significant decrease in coal and lignite consumption has been observed in recent years. This situation is primarily related to the accelerating decarbonisation policy and support of renewable energy sources, which are considered to be environmentally friendly. The pandemic occurring in recent years has also played an important role in shaping the raw materials market. The author shows the possibilities and directions in which the coal economy has prospects for development and expansion. The amount of the world’s coal resources is presented, as well as the size of the global consumption of the raw material in the 2000–2011 years, specifying in China, India, Asia, the USA and the countries of the European Union. The structure of the coal economy is presented in the light of the policies and laws enacted by the European Union Comission, in particular in Poland, Germany and France. The appearance of the hard coal sector and lignite sector in Poland is described in detail. The size of resources was given in terms of coal classification. The presented data were based on a range of information and reports from world organizations such as the International Energy Agency or British Petroleum.
Go to article

Bibliography


AGEB 2021 – Energy Consumption in Germany 2020. Arbeitsgemeinschaft Energiebilanzen 2021. [Online] https://ag-energiebilanzen.de/4-1-Home.html [Accessed: 2021-05-01].

ARE 2009–2019 – Energy Situation in Poland National Energy Balance 4th Quarter 2009–2019 (Sytuacja Energetyczna w Polsce Krajowy Bilans Energii IV Kwartał 2009–2019) Agencja Rynku Energii (in Polish).

Blaschke, W. and Ozga-Blaschke, U. 2015 – Coking coal as a critical raw material in the EU (Węgiel koksowy surowcem krytycznym w UE). Zeszyty Naukowe IGSMiE PAN 90, pp. 131–143 (in Polish).

BP 2002 – BP Statistical Review of World Energy 2002, June 2002. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

BP 2020 – BP Statistical Review of World Energy 2020, June 2020. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

Central Statistical Office 2020 – Employment and Wages in the National Economy in 2019 (Zatrudnienie i wynagrodzenia w gospodarce narodowej w 2019 r.). [Online] https://stat.gov.pl/obszary-tematyczne/rynek-pracy/pracujacy-zatrudnieni-wynagrodzenia-koszty-pracy/zatrudnienie-i-wynagrodzenia-w-gospodarce-narodowej -w-2019-roku,1,37.html [Accessed: 2021-05-01] (in Polish).

Euracoal 2006–2020 – Euracoal Market Report. Editions from the years 2006–2020. [Online] https://euracoal.eu/ [Accessed: 2021-06-04].

Euracoal Statistics 2012–2020 – Coal and lignite production and imports in Europe [Online] https://euracoal.eu/info/euracoal-eu-statistics/ [Accessed: 2021-06-04].

European Commission 2020 – A More Ambitious Climate Goal for Europe by 2030 Investing in a Climate Neutral Future for the Benefit of Citizens. [Online] https://ec.europa.eu/ [Accessed: 2021-06-25].

France 2021 – France energy report May 2021. [Online] https://www.enerdata.net/estore/country-profiles/france.html [Accessed: 2021-06-25].

IEA 2021 – Global Energy Review 2021 Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021 International Energy Agency 2021. [Online] https://www.iea.org/reports/global-energy-review-2021 [Accessed: 2020-07-24].

IEEFA 2020 – Coal-fired electricity generation in France fell 72% in 2019. Institute for Energy Economics and Financial Analysis [Online]: https://ieefa.org/coal-fired-electricity-generation-in-france-fell-72-in–2019/ [Accessed: 2020-07-24].

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Tajduś, A., Cała, M. Ptak, M. and Sikora, M. 2018. Strategic Conditions for the Future of Brown Coal Mining in Poland. Polityka Energetyczna – Energy Policy Journal 21(4), pp. 155–178. doi : 10.33223/epj/103691.

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Ptak, M. and Sikora, M. 2018. Lignite as the Optimal Energy Raw Material for Poland (Węgiel brunatny optymalnym surowcem energetycznym dla Polski). Zeszyty Naukowe IGSMiE PAN 106, pp. 61–84. doi : 10.24425/124403 (in Polish).

KOBiZE 2019 – National emission balance of SO2, NOx, CO, NH3, NMLZO, dust, heavy metals and POPs for 2015–2017 by SNAP classification. Synthesis report, 2019 (Krajowy bilans emisji SO2, NOx, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2015–2017 w układzie klasyfikacji SNAP. Raport syntetyczny, 2019). Krajowy Ośrodek Bilansowania i Zarządzania Emisjami (KOBiZE), Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa 2019 (in Polish).

Krawczyk, P. 2020. Evaluation of the situation of hard coal mining in Poland in 2016–2018 using the public income balance method (Ocena stanu górnictwa węgla kamiennego w Polsce w latach 2016–2018 przy wykorzystaniu metody bilansu dochodów publicznych). Przegląd Górniczy 76(4), pp. 44–54 (in Polish).

Młynarski, T. 2014. Energy policy and security in France (Polityka i bezpieczeństwo energetyczne Francji). Teka Kom. Politol. Stos. Międzynar. – OL PAN, 9, pp. 51–62 (in Polish).

Ozga-Blashke, U. 2020. Coking coal in the European green deal strategy. Inżynieria Mineralna 2(2), pp. 87–93.

PEP2040 project – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r. – strategia rozwoju sektora paliwowo-energetycznego). Warszawa: Ministerstwo Energii, 2019 (in Polish).

PEP2040 – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r.). Warszawa: Ministerstwo Energii, 2021 (in Polish).

Pepłowska et al. 2017 – Pepłowska, M., Gawlik, L. and Kryzia, D. 2017. Statistical analysis of the relationship between the economic condition of mining supporting companies and the condition of the hard coal mining industry (Analiza statystyczna zależności finansów przedsiębiorstw okołogórniczych od kondycji branży górnictwa węgla kamiennego). Przegląd Górniczy 73(11), pp. 15–22 (in Polish).

PIG-PIB 2020 – Balance of Mineral Reserves and Deposits in Poland As at 31 December 2019 (Bilans zasobów i złóż kopalin w Polsce wg stanu Na 31 XII 2019 r.) Warszawa 2020 (in Polish).

PN-G-97002: 2018-11 Hard coal – Classification – Types (PN-G-97002: 2018-11 Węgiel kamienny – Klasyfikacja – Rodzaje) (in Polish).

Ratajczak, T. and Hycnar, E. 2017. Supporting minerals in lignite deposits (Kopaliny towarzyszące w złożach węgla brunatnego). Kraków: MERRI PAS (in Polish).

SRP 2021 – List of exploration, appraisal and production licences for solid minerals (as at 30 June 2020) (Lista koncesji poszukiwawczych, rozpoznawczych oraz wydobywczych dot. kopalin stałych (stan na dzień 30 czerwca 2020 r.)) Serwis Rzeczypospolitej Polskiej [Online] https://dane.gov.pl/dataset/221,zestawienia-koncesji-udzielonych-przez-ministra-srodowiska/resource/25028/table?page=1&per_page=50&q=brunatny&sort= [Accessed: 2020-07-24] (in Polish).

Tajduś, A. 2021. „QUO VADIS” Polish mining? („QUO VADIS” polskie górnictwo?) Przegląd Górniczy 77(1–3), pp. 7–13 (in Polish).

Wasilewski, P. and Kobel-Najzarek, E. 1973. Structure and properties of hard coal (Budowa i własności węgla kamiennego). Gliwice: Wyd. PŚl (in Polish).

WEO 2019 – World Energy Outlook 2019. [Online] https://www.iea.org/reports/world-energy--outlook–2019 [Accessed: 2020-07-24].

WEO 2021 – World Energy Outlook 2020. [Online] https://www.iea.org/reports/world-energy-outlook–2020/ [Accessed: 2021-07-3].

Zhang et al. 2020 – Zhang, K., Yang, S., Liu, S., Shangguan, J., Du, W., Wang, Z. and Chang, Z. 2020 – New strategy toward household coal combustion by remarkably reducing SO2 emission. American Chemical Society Omega 5(6), pp. 3047–3054.
Go to article

Authors and Affiliations

Monika Pepłowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Strategies and roadmaps are essential in areas that require long-term planning, such as the energy transition. Strategic plans can play an important role in developing visions for reducing CO2 emissions, developing renewable energy sources (RES) and hydrogen technologies. Hydrogen can be included in value chains in various sectors of the economy as raw material, emission-free fuel, or as an energy carrier and storage. The analysis of the future of hydrogen energy, which is an essential component of transforming the economy into an environmentally neutral one, is an integral part of the strategies of the European Union (EU) Member States.
This article reviews the strategic documents of the EU countries in the field of a hydrogen economy. Currently, six EU Member States have approved the hydrogen strategy (Germany, France, the Netherlands, Portugal, Hungary, Czech Republic), and two of them have roadmaps (Spain, Finland). The others are working on their completion in 2021. EU countries have the possibility of energy transformation based on a hydrogen policy, including green hydrogen, within the framework of the European Green Deal, i.e. aiming for climate neutrality and creating a modern and environmentally friendly economy.
By 2030, some of the countries plan to become a leader not only in the field of hydrogen production or RES development aimed at this process but also in the areas of research and development (R&D), sales of new technologies, and international cooperation. Member countries are focused on the production of clean hydrogen using electrolysis, creating incentives to stimulate demand, developing a hydrogen market, and implementing hydrogen infrastructure.
Go to article

Authors and Affiliations

Renata Koneczna
1
ORCID: ORCID
Justyna Cader
1 2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Geology, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The circular economy (CE) has been a European Union (EU) priority since 2014, when first official document on the CE was published. Currently, the EU is on the road to the transformation from a linear economy model to the CE model. In 2019, a new strategy was announced – the European Green Deal, the main goal of which is to mobilize the industrial sector for the CE implementation. The CE assumes that the generated waste should be treated as a secondary raw material. The paper presents an analysis of the possibility of using selected groups of waste for the production of fertilizers. Moreover, an identification of strengths and weaknesses, as well as market opportunities and threats related to the use of selected groups of waste as a valuable raw material for the production of fertilizers was conducted. The scope of the work includes characteristics of municipal waste (household waste, food waste, green waste, municipal sewage sludge, digestate), industrial waste (sewage sludge, ashes from biomass combustion, digestate) and agricultural waste (animal waste, plant waste), and a SWO T (strengths and weaknesses, opportunities and threats) analysis. The fertilizer use from waste is determined by the content of nutrients (phosphorus – P, nitrogen, potassium, magnesium, calcium ) and the presence of heavy metals unfavorable for plants (zinc, lead, mercury). Due to the possibility of contamination, including heavy metals, before introducing waste into the soil, it should be subjected to a detailed chemical analysis and treatment. The use of waste for the production of fertilizers allows for the reduction of the EU’s dependence on the import of nutrients from outside Europe, and is in line with the CE.
Go to article

Authors and Affiliations

Marzena Smol
1
ORCID: ORCID
Dominika Szołdrowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

An importance of secondary mineral raw materials sources for economy was demonstrated as well as sources of its acquirement were outlined. Various aspects of waste use in economy were discussed, underlining importance of waste removal for improvement of environment. A related legal framework in Poland and European Union was outlined. Results of already carried works in research and stocktaking of mineral waste accumulations in Poland were reminded. Legal procedures aiming at exploitation of mineral waste deposits formally defined and similar facilities falling outside definition of mineral waste deposits were discussed. It was evidenced that a gap in the legal framework exists, regarding particularity of waste acquirement from anthropogenic mineral deposits. Consequently, a need to require a preparation of equivalent of a resource report, feasibility study and a plan defining exploitation and conversion modes for material lifted from waste accumulations was demonstrated.
For the sake of a clear terminology applied it was recommended to incorporate terms of “anthropogenic mineral resources” and “anthropogenic mineral deposit” as an appropriate adjustment to the existing regulation. A need to intensify stocktaking efforts on mineral waste accumulations in Poland was emphasized. It was also suggested that its results should be recognized in the Balance of Mineral Resources and State Resource Policy.
In summary a recommended legal framework to regulate acquirement of mineral waste, recognizing particularities of such processes, was presented.
Go to article

Bibliography

Act 1980. Act of January 31, 1980 on Environmental Protection and Formation. (Ustawa z dnia 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska.) (Journal of Laws 1994. 49.196 as amended) (in Polish).

Act 1991. Act of March 9, 1991 on Amendments to the Mining Law (Ustawa z dnia 9 marca 1991 r. o zmianie Prawa górniczego) (Journal of Laws 1991.31.128) (in Polish).

Act 1997. Act of June 27, 1997 on Waste (Ustawa z dnia 27 czerwca 1997 r. o odpadach) (Journal of Laws 1997.96.592) (in Polish).

Act 2001. The Act on Waste of April 27, 2001 (Ustawa z dnia 27 kwietnia 2001 r. o odpadach) (Journal of Laws 2001.62.628) (in Polish).

Act 2008. Act of July 10, 2008 on Mineral Waste (Ustawa z dnia 10 lipca 2008 r. o odpadach wydobywczych) (Journal of Laws 2008. 138. 865) (in Polish).

Act 2012. Act of December 14, 2012 on Waste (Ustawa z dnia 14 grudnia 2012 r. o odpadach) (Journal of Laws 2013. 21) (in Polish). Act 2021.

Act of April 27, 2021 on Waste (Ustawa z dnia 27 kwietnia 2021 r. o odpadach) (Journal of Laws 2021. 62.628) (in Polish). GML 1994.

Act of February 4, 1994 Geological and Mining Law (Ustawa z dnia 4 lutego 1994 r. Prawo geologiczne i górnicze) (Journal of Laws 1994.27.96) (in Polish). GML 2011.

Act of June 9, 2011, Geological and Mining Law (Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze) (Journal of Laws 2011.63.981, as amended) (in Polish).

ML 1953. Decree of May 6, 1953. Mining Law (Dekret z 6 maja 1953 r. Prawo górnicze) (Journal of Laws 1953.29.113) (in Polish).

Nieć, M. ed. 2002. Rules Documenting Mineral Resources (Zasady dokumentowania złóż kopalin stałych). Warszawa: Ministerstwo Środowiska, Departament Geologii i Koncesji Geologicznych, Komisja Zasobów Kopalin (in Polish).

Nieć et al. 2018 – Nieć, M., Uberman, R. and Galos, K. 2018. Clastic sedimentary anthropogenic mineral deposits (Okruchowe antropogeniczne złoża kopalin). Górnictwo Odkrywkowe 3, pp. 31–37 (in Polish).

Pietrzyk-Sokulska et al 2018 – Pietrzyk-Sokulska, E., Radwanek-Bąk, B. and Kulczycka, J. 2018. Secondary mineral resources: problems of nomenclature and classification in connection with the implementation of the circular economy (Mineralne surowce wtórne – problemy polskiego nazewnictwa i klasyfikacji w związku z realizacją gospodarki w obiegu zamkniętym). Przegląd Geologiczny 3, pp. 160–165 (in Polish).

POLVAL 2021. Polish Code for Valuation of Mineral Assets. Kraków: PSWZK (in Polish, in print).

Rules on Documenting Mineral Resources 2002. Warszawa: Ministry of Environment Protection.

Salminen et al. 2021 – Salminen, J., Garbarino, E., Orveillon, G., Saveyn, H., Mateos Aquilino, V., Llorens Gonzalez, T., Garcia Polonio, F., Horckmans, L., D`hugues, P., Balomenos, E., Dino, G., De La Feld, M., Madai, F., Faldessy, J., Mucsi, G., Gombkoto‘, I. and Calleja, I. 2021. Recovery of critical and other raw materials from mining waste and landfills. EUR 29744 EN. Publications Office of the European Union, Luxembourg, 2019, DOI: 10.2760/174367, JRC116131.

Strategy 2016. Strategy for responsible development (Strategia na rzecz odpowiedzialnego rozwoju). [Online] https://www.gov.pl/web/fundusze-regiony/informacje-o-strategii-na-rzecz-odpowiedzialnego-rozwoju [Accessed: 2021-08-04] (in Polish).

Suppes, R. and Heuss-Aßbichler, S. 2021. How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part I: A UNFC-Compliant Screening Approach for Site Selection. Resources 10(3), 26. DOI: 10.3390/resources10030026.

Szczęśniak, H. 1990. Hazards to natural environment resulting from accumulated mineral waste (Zagrożenia środowiska przyrodniczego w wyniku gromadzenia odpadów mineralnych). [In:] Rules for protection and formation of environment in areas with mineral deposits (Zasady ochrony i kształtowania środowiska przyrodniczego na obszarach złóż kopalin). Vol. 18. Warszawa: Szkoła Główna Gospodarstwa Wiejskiego – Akademia Rolnicza w Warszawie (in Polish).

Uberman, Ry. 2017. Accompanying minerals in lignite deposits. Volume II. Legal, economic and mining aspects of the development of accompanying minerals (Kopaliny towarzyszące w złożach węgla brunatnego. Tom II. Prawno – ekonomiczne oraz górnicze aspekty zagospodarowania kopalin towarzyszących). Kraków: MEERI PAS, pp. 128 (in Polish).

Uberman, Ry. 2021. Mineral waste in light of the provisions of the Act on waste, the Act on extractive waste, and the Geological and mining law. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(1), pp. 117–140.

Winterstetter et al 2021 – Winterstetter, A., Heuss-Assbichler, S., Stegemann, J., Kral, U., Wäger, P., Osmani, M. and Rechberger, H. 2021. The role of anthropogenic resource classification in supporting the transition to a circular economy. Journal of Cleaner Production 297. DOI: 10.1016/j.jclepro.2021.126753.
Go to article

Authors and Affiliations

Ryszard Uberman
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Asbestos cement sheets on building roofs and façades as well as asbestos cement water and sewerage pipes are the most frequently existing elements that contain asbestos in Poland. During removal from a specific building such a material automatically becomes hazardous waste. The presented paper covers studies carried out on leachability of pollutants from asbestos-containing waste, previously used for roofing. Laboratory tests under static conditions were carried out (1:10 test, pursuant to rules of the PN-EN 12457/1-4 standard) using distilled water as the leaching medium. Aluminium, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were determined in the eluate. Low leachability of individual metals under the planned conditions was observed. In general, such metals as cadmium, nickel, lead, zinc, boron and mercury were not observed in solutions. The other analysed metals were observed in eluates, but their concentrations were usually low. The low leachability was found for barium (0.019 to 0.419 mg/dm3), chromium (0.019 to 0.095 mg/dm3), copper (0.006 to 0.019 mg/dm3), and iron (<0.01 to 0.017 mg/dm3). Increased leachability values were found only for strontium, between 0.267 and 4.530 mg/dm3, and aluminium, ranging from 0.603 to 3.270 mg/dm3. The analysed asbestos and cement materials feature a low percentage content of asbestos in flat and corrugated asbestos cement sheets (10–15%). Because of that it is possible to presume that pollutants characteristic of cement will be mainly present in products of leaching.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID
Jarosław Staszczak
2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract


The demand for coking coal in international trade is determined mainly by demand from the steel industry, which, in turn, is dependent on the global economic situation and the condition of the steel market.
Business cycles in commodity markets are normal, but in the 21st century the good and bad times in the global coal market have shortened, and the amplitudes of price fluctuations have been much greater than they used to be.
China, as the world’s biggest producer and consumer of coking coals, and at the same time the largest importer and major participant in the Asian spot market, played a leading role in these events.
On the supply side, the main factor for these events is the concentration of production of premium hard coals on the east coast of Australia (in Queensland), in an area exposed to strong weather conditions (floods, hurricanes). Australia’s share of coal supply to the international metallurgical coal market (seaborne) is about 60%.
Coal prices on the international market are mainly shaped by the relationships between Australian suppliers and Asian customers. The increased share of China and India in global coking coal trade has weakened the bargaining power of Japanese giant companies in benchmark price negotiations.
Using the example of FOB prices of the Australian Premium HCC, the article shows how prices in metallurgical coal trade have evolved (in a long time horizon) against the background of market conditions. It also describes how the ongoing changes have affected the way benchmark prices are set in international coking coal trade.
Go to article

Bibliography


Asia’s met coal... 2021 – Asia’s met coal trapped in a season of low prices. S&P Global Platts Metals Trade Review. [Online] www.spglobal.com/platts/en/market-insights [Accessed: 2021-07-05].
China–Australia... 2021 – China–Australia relations transform met coal market dynamics. S&P Global Platts Metals Trade Review. [Online] www.spglobal.com/platts/en/market-insights [Accessed: 2021-07-05].
China’s economy 2005 – China’s economy and its impact on the global economic situation. Government Center for Strategic Studies (Gospodarka Chin i jej wpływ na koniunkturę światową. Rządowe Centrum Studiów Strategicznych). Warsaw, November 2005 (in Polish).
Coal Information 2020 – with 2019 data. Paryż: IEA.
CTI Platts 2021 – CTI – Coal Trader International. S&P Global Platts (Editions from the years 2003–2021).
Energy Publishing 2010. Methodology and Specifications for Coking Coal Queensland Index (CCQ) and Coking Coal Hampton Roads Index (CCH). September 9, 2010 – Version 15, 20. [Online] www.energypublishing.com [Accessed: 2021-07-05].
Global Economy 2019 – Bulletin – September 2019: The Changing Global Market for Australian Coal. [Online] https://www.rba.gov.au/publications/bulletin/2019/sep/ [Accessed: 2021-07-05].
ICR Platts – ICR – International Coal Report. Wyd. Platts – The McGraw Hill Companies, England (Editions from the years 2003–2013).
IHS Markit 2021 – Coking coal marker price. Methodology and specifications. Effective February 2021. [Online] https://cdn.ihsmarkit.com [Accessed: 2021-07-05].
Metallurgical Coal 2018 – Metallurgical Coal 2018 Spot Trade Review. Metals special report. March 2019. S&PGlobal Platts. [Online] www.platts.com/metals [Accessed: 2021-07-05].
Ozga-Blaschke, U. 2004. Prices of metallurgical coke and of coking coal on foreign markets (Ceny koksu metalurgicznego i węgla koksowego na rynkach międzynarodowych). Przegląd Górniczy 60(7–8), pp. 21–24 (in Polish).
Ozga-Blaschke, U. 2006. State of the art and forecast of international coking coal market development (Stan aktualny i prognozy rozwoju międzynarodowego rynku węgla koksowego). Polityka Energetyczna – Energy Policy Journal 9(is. special), pp. 633–643 (in Polish).
Ozga-Blaschke, U. 2009. The impact of the economic crisis on the steel, coking coal and coke markets (Wpływ kryzysu gospodarczego na rynki stali, węgla koksowego i koksu). Przegląd Górniczy 65(3–4), pp. 8–13 (in Polish).
Ozga-Blaschke, U. 2010. Coking coal management (Gospodarka węglem koksowym). Kraków: MEERI PAS (in Polish).
Ozga-Blaschke, U. 2012. Coking coal market development within the context of the global economic situation (Rozwój rynku węgli koksowych na tle sytuacji gospodarczej na świecie). Polityka Energetyczna – Energy Policy Journal 15(4), pp. 255–267 (in Polish).
Ozga-Blaschke, U. 2016. Metallurgical Raw Materials Markets (Rynki surowców metalurgicznych). Zeszyty Naukowe IGSMiE PAN 95, pp. 7–22 (in Polish).
Ozga-Blaschke, U. 2017. Evolution of price mechanism on the international market of metallurgical coal (Ewolucja mechanizmu cenowego na międzynarodowym rynku węgli metalurgicznych). Zeszyty Naukowe IGSMiE PAN 98, pp. 65–76 (in Polish).
Ozga-Blaschke U. 2018. Coking coal prices on the international market – the current situation and forecasts (Ceny węgla koksowego na rynku międzynarodowym – sytuacja bieżąca i prognozy). Zeszyty Naukowe IGSMiE PAN 105, pp. 53–62 (in Polish).
Resources... 2021 – Resources and Energy Quarterly, March 2021, June 2021. DISER. [Online] www.industry.gov.au [Accessed: 2021-07-05].
Specifications guide Global Metallurgical coal. Latest update: April 2021. S&P Global Platts. [Online] www.spglobal.com [Accessed: 2021-07-05].
Worldsteel Statistical Reports 2021. [Online] https://www.worldsteel.org/ [Accessed: 2021-07-05].
Go to article

Authors and Affiliations

Urszula Ozga-Blaschke
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The insurance funds belong to efficient measures mitigating risks in geothermal projects, including resource risk. They already exist in some European countries, e.g., France, the Netherlands, Turkey. Recently, the proposals of establishing such funds were elaborated for three countries: Greece, Hungary, and Poland within the framework of the EU-funded project “Developing geothermal and renewable energy projects by mitigating their risks”, GEORISK (www.georisk-project.eu).
A 10 year operational and financial simulation of the proposed public insurance funds was conducted to prove their sustainability in each of three listed states. It started with the determination of the country-specific premises. The numbers of projects in the next 10 years possible to be covered by funds were assumed by the authors on the bases of realistic estimations.
The initial capital, the fixed costs, the costs of the project evaluation, the premium fees paid by the investors, the payment for the unsuccessful projects altogether were taken into account. The first draft simulation was done with the exact Hungarian assumptions and inputs of fixed costs and also with average project data, thus making it appropriate to perform sensitivity analyses on: insurance premiums, success rates and the risk coverages. Then, complete simulations were made for three listed countries.
The results of the simulation show that a resource risk insurance fund can be a sustainable and an effective measure to support geothermal energy sector development. During the planning of a new fund, it is important to make use of long experiences both of the former and existing funds.
Go to article

Bibliography

Boissavy, C. 2017. The successful geothermal risk mitigation system in France from 1980 to 2015. European Geologist Magazine. Geothermal – The Energy of the Future. Science & Technology. [Online] https://titra24.com/old/8/science-technology-special-edition-of-european-geologist-magazine-on-geothermal-energy [Accessed: 2021-07-04].

Boissavy, C. and Grière, O. 2017. The history and detailed results for the short and long term guarantee system for geothermal heating operations using deep aquifers set up in France in the early 1980’s. Report ADEME, March 2017. AFGP Archive.

Dumas et al. 2019 – Dumas, P., Garabetian, T., Le Guénan, T., Kępińska, B., Kasztelewicz, A., Karytsas, S., Siddiqi, G., Lupi, N., Seyidov, F., Nador, A., Kaufhold, J., Boissavy, C., Yildirim, C., Bozkurt, C., Kujbus, A., Spyridonos, E., Oztekin, R. and Link, K. 2019. Risk mitigation and insurance schemes adapted to geothermal market maturity: the right cheme for my market. Proceedings, European Geothermal Congress 2019. The Hague, The Netherlands. [Online] https://www.researchgate.net/publication/333977809_Risk_Mitigation_ and_Insurance_Schemes_Adapted_to_Geothermal_Market_Maturity_The_Right_Scheme_for_my_Market [Accessed: 2021-07-04].

Dziadzio et al. 2020 – Dziadzio, P., Maj, J., Jerzak, M., Ofiara K., Bąk, D. and Kuś, B. 2020. Geothermal energy in Poland : development stimulated by the geological subfund of the National Fund for Environmental Protection and Water Management (Geotermia w Polsce: rozwój stymulowany przez środki subfunduszu geologicznego Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej). Przegląd Geologiczny 68(3), pp. 151–155 (in Polish).

Heijnen et al. 2015 – Heijnen, L., Rijkers, R. and Gussinklo, O.R. 2015. Management of geological and drilling risks of geothermal projects in the Netherlands. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.

Karytsas et al. 2019 – Karytsas, S., Polyzou, O. and Karytsas, C. 2019. Social aspects of geothermal energy in Greece. Geothermal Energy and Society, pp. 123–144. Springer, Cham.

Kępińska et al. 2021 – Kępińska, B., Kasztelewicz, A. and Miecznik, M. 2021. Updated version mounted. Activities for geothermal risk insurance fund projects in Poland (Zaktualizowana propozycja końcowa. Działania dla ustanowienia w Polsce funduszu ubezpieczenia od ryzyka w projektach geotermalnych). Materiały na Warsztaty krajowe w Polsce. Runda 3. 24.02.2021. WP4.2. Projekt GEORISK (in Polish). Arch. GEORISK project.

Mendrinos et al. 2010 – Mendrinos, D., Choropanitis, I., Polyzou, O. and Karytsas, C. 2010. Exploring for geothermal resources in Greece. Geothermics 39(1), pp. 124–137.

2020 EGEC Geothermal Market Report. Key findings. [Online] www.egec.org [Accessed: 2021-07-04].

2020 EGEC Geothermal Market Report. 2021. [Online] www.egec.org [Accessed: 2021-07-04].

[Online] www.egec.org [Accessed: 2021-07-04].

[Online] www.egec.org/policy-documents/joint-letter-for-an-eu-wide-renewable-risk-mitigation-scheme

[Online] www.georisk-project.eu [Accessed: 2021-07-04].

[Online] www.nfosigw.gov.pl [Accessed: 2021-07-04].
Go to article

Authors and Affiliations

Beata Kępińska
1
ORCID: ORCID
Attila Kujbus
2
Spirydon Karytsas
3
Christian Boissavy
4
Dimitrios Mendrinos
3
Constantine Karytsas
3
Aleksandra Kasztelewicz
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  2. Geothermal Express Ltd., Budapest, Hungary
  3. Center for Renewable Energy Sources and Saving, Pikermi, Greece
  4. GEODEEP, Paris, France
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of the dynamic elastic properties of a coal seam is important in the context of various types of calculations of the seam behavior under various stress-strain conditions. These properties are often used in numerical and analytical modeling related to maintaining the stability of excavations and the analysis of mechanisms, e.g. related to the risk of rock bursts. Additionally, during the implementation of seismic surveys, e.g. seismic profiling and seismic tomography in coal seams, the reference values of the elastic properties of coal are used in the calculation of relative stresses in various geological and mining conditions.
The study aims to calculate the dynamic elastic parameters of the coal seam located at a depth of 1,260 m in one of the hard coal mines in the Upper Silesian Coal Basin (USCB). Basic measurements of the velocity of P- and S-waves were conducted using the seismic profiling method. These surveys are unique due to the lack of the velocity wave values in the coal seam at such a great depth in the USBC and difficult measurement conditions in a coal mine. As a result, dynamic modulus of elasticity was calculated, such as Young’s modulus, volumetric strain modulus, shear modulus and Poisson’s ratio. The volumetric density of coal used for calculations was determined on the basis of laboratory tests on samples taken in the area of the study. The research results showed that the calculated mean P-wave velocity of 2,356 m/s for the depth of 1,260 m is approximately consistent with the empirical relationship obtained by an earlier study. The P-wave velocity can be taken as the reference velocity at a depth of approx. 1,260 m in the calculation of the seismic anomaly in the seismic profiling method.
Go to article

Bibliography

Brown, E.T. and Hoek, E. 1978. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15(4), pp. 211–215.

Chlebowski, D. and Burtan, Z. 2021. Geophysical and analytical determination of overstressed zones in exploited coal seam: A case study. Acta Geophys. 69, pp. 701–710. DOI: 10.1007/s11600-021-00547-z.

Czarny et al. 2016 – Czarny, R., Marcak, H., Nakata, N., Pilecki, Z. and Isakow, Z. 2016. Monitoring velocity changes caused by underground coal mining using seismic noise. Pure. Appl. Geophys. 173, pp. 1907–1916. DOI: 10.1007/s00024-015-1234-3.

Dubiński, J. 1989. Seismic method of shock hazard assessment in hard coal mines (Sejsmiczna metoda wyprzedzającej oceny zagrożenia wstrząsami górniczymi w kopalniach węgla kamiennego). Prace Głównego Instytutu Górnictwa. Katowice: Central Mining Institute, 163 pp. (in Polish).

Dubiński, J. and Konopko, W. 2000. Rock bursts – assessment, prognosis, defeating (Tąpania – ocena, prognoza, zwalczanie). Katowice: Central Mining Institute, 378 pp. (in Polish).

Dubiński et al. 2001 – Dubiński, J., Pilecki, Z. and Zuberek, W. 2001. Geophysical research in mines – past, present and future plans (Badania geofizyczne w kopalniach – przeszłość, teraźniejszość, i zamierzenia na przyszłość). Kraków: MEERI PAS (in Polish).

Gustkiewicz, J. ed. 1999. Physical properties of Carboniferous rocks of the Upper Silesian coal basin. Rocks of Saddle beds (Właściwości fizyczne wybranych skał karbońskich Górnośląskiego Zagłębia Węglowego – skały warstw siodłowych). Kraków: MEERI PAS, 267 pp. (in Polish).

ISO 349:2020 Hard coal – Audibert-Arnu dilatometer test.

Jarzyna et al. 2020 – Jarzyna, J., Niculescu, B., M., Malinowski, M. and Pilecki Z. 2020. Editorial for special issue advances in engineering, environmental and mining geophysics. Acta Geophys. 69(2), pp. 609–611. DOI: 10.1007/s11600-021-00560-2.

Kokowski et al. 2019 – Kokowski, J., Szreder, Z. and Pilecka, E. 2019. Reference P-wave velocity in coal seams at great depths in Jastrzebie coal mine. E3S Web of Conf. 133, 01011. DOI: 10.1051/e3sconf/201913301011.

Kudyk, M. and Pilecki Z. 2009. Modulus of deformation of Carpathian flysch on the route of the “Emilia” tunnel in the Zywiec Beskids (Modul deformacji utworow fliszu karpackiego na trasie tunelu „Emilia” w Beskidzie Zywieckim). Zeszyty Naukowe IGSMiE PAN 76, pp. 45–64 (in Polish).

Ladanyi, B. 1974. Use of the long-term strength concept in the determination of ground pressure on tunnel linings. Proceedings of the Third Congress of the Int. Soc. for Rock Mech., Denver, vol. II part B, pp. 1150–1156.

Majcherczyk, T. and Małkowski, P. 2002. Relation between carbon rock depth and behavior of rock mass around openings (Głębokość zalegania skał karbońskich a zachowanie się górotworu wokół wyrobiska korytarzowego). Proceedings of the Conference of Winter School of Rock Mass Mechanics (XXV Zimowa Szkoła Mechaniki Górotworu). Zakopane, 18–22 March, 2002, pp. 427–435 (in Polish).

Majcherczyk et al. 2012 – Majcherczyk, T., Pilecki, Z., Niedbalski, Z., Pilecka, E., Blajer, M. and Pszonka, J. 2012. Impact of geological, engineering and geotechnical conditions on the selection of parameters of the initial support of the road tunnel in Laliki (Wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego w Lalikach). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 28(1), pp. 103–124 (in Polish).

Małkowski et al. 2021 – Małkowski, P., Niedbalski, Z. and Balarabe, T. 2021. A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. Int. J Coal Sci. Technol. 8(2), pp. 312–323.

Marcak, H. and Pilecki, Z. 2019. Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain. Arch. Min. Sci. 64, pp. 197–212, DOI: 10.24425/ams.2019.126280.

Olechowski et al. 2018 – Olechowski, S., Krawiec, K., Kokowski, J., Szreder, Z., Harba, P. and Ćwiękała, M. 2018. Comparison of the results of the seismic profiling and WAS-96/RMS seismoacoustic active method in an assessment of the impact of the overlying coal seam edge. E3S Web of Conf. 66, 01011. DOI: 10.1051/e3sconf/20186601011.

PN-G-97002:2018-11 Węgiel kamienny – Klasyfikacja – Typy.

Pilecki, Z. 1995. An Example of Rock Burst Hazard State Control Using a Z onal Seismoacoustic Observation. Proc. Fifth Conf. on Acoustic Emission/Microseismic Activity, Clausthal-Zellerfeld: Trans. Tech. Publications, pp. 313–332.

Pilecki, Z. 1999. Dynamic analysis of mining tremor impact on excavation. [In:] Detournay, C. and Hart, R. eds. Proc. Int. FLAC Symp. on Numerical Modeling in Geomechanics. Minneapolis, Minnesota, USA: 1–3 September, 1999. Rotterdam: A. A. Balkema, pp. 397–400.

Pilecki, Z. 2018. Seismic method in geoengineering (Metoda sejsmiczna w geoinżynierii). Kraków: MEERI PAS, 311 pp. (in Polish).

Szreder et al. 2008 – Szreder, Z., Pilecki, Z. and Kłosiński, J. 2008. Effectiveness of recognition of exploitation edge influence with the help of profiling of attenuation and velocity of seismic wave (Efektywność rozpoznania oddziaływania krawędzi eksploatacyjnych metodami profilowania tłumienia oraz prędkości fali sejsmicznej). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(2), pp. 215–226 (in Polish).

Szreder, Z. and Barnaś, M. 2017. Assessment of the impact of an overlying coal seam edge using seismic profiling of refracted P-wave velocity. E3S Web of Conf. 24, 01007 DOI: 10.1051/e3sconf/20172401007.

Ślizowski et al. 2013 – Ślizowski, J., Pilecki, Z., Urbańczyk, K., Pilecka, E., Lankof, L. and Czarny, R. 2013. Site assessment for astroparticle detector location in evaporites of the Polkowice-Sieroszowice copper ore mine, Poland. Adv. High Energy Phys. 12, pp. DOI: 10.1155/2013/461764.

Wojtecki et al. 2016 – Wojtecki, Ł., Dzik, G. and Mirek, A. 2016. Changes of te dynamic elastic modules of the coal seam ahead the longwall face (Zmiany dynamicznych modułów sprężystości pokładu węgla przed frontem ściany). Przegląd Górniczy 72(1), pp. 57–62 (in Polish).
Go to article

Authors and Affiliations

Krzysztof Krawiec
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland

Additional info

The subject matter of the articles published in Mineral Resources Management covers issues related to minerals and raw materials, as well as mineral deposits, with particular emphasis on:

  • The scientific basis for mineral resources management,
  • The strategy and methodology of prospecting and exploration of mineral deposits,
  • Methods of rational management and use of deposits,
  • The rational exploitation of deposits and the reduction in the loss of raw materials,
  • Mineral resources management in processing technologies,
  • Environmental protection in the mining industry,
  • Optimization of mineral deposits and mineral resources management,
  • The rational use of mineral resources,
  • The economics of mineral resources,
  • The raw materials market,
  • Raw materials policy,
  • The use of accompanying minerals,
  • The use of secondary raw materials and waste,
  • Raw material recycling,
  • The management of waste from the mining industry.

This page uses 'cookies'. Learn more