Management and Production Engineering Review

Content

Management and Production Engineering Review | 2022 | vol. 13 | No 1

Download PDF Download RIS Download Bibtex

Abstract

The consumption of various forms of primary and secondary energy is one of the main sources of greenhouse gas emissions to the atmosphere. Also, the increase in the prices of energy resources is an important factor affecting the economic profitability of running a business organization. Legal requirements in the European Union also affect the need to implement appropriate solutions aimed at increasing energy efficiency, which translates into the need of implementing Energy Management Systems, based the ISO 50001 standard, in many enterprises.. In the case study presented in the article, which is based on a company from the energy industry in Poland, the most important Energy Performance Indexes and the impact of the quality of their information on the results obtained were reviewed. In the analyzed example, the main process used only 28% of the total energy consumption in the organization. Insufficient attention to auxiliary processes led to an undercut of Energy Performance by nearly 11% in the first year of operation. It is partic-ularly important to properly collect data on auxiliary processes, which are very often omitted or treated in general in companies, and as shown may constitute a significant share in the total amount of energy consumed.
Go to article

Authors and Affiliations

Łukasz Grudzień
1
ORCID: ORCID
Filip Osiński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Since the beginning of the Fourth Industrial Revolution, enterprises have been promising the main advantages and benefits of implementing the Industry 4.0 technologies. However, the perception of new Industry 4.0 technologies may vary between different types of enterprises. The paper focuses on the main advantages of Industry 4.0 technologies for manufacturing enterprises. We analyze the difference of enterprise size and technological intensity in enterprise managers’ perception. The research was conducted based on a questionnaire survey that participated 217 enterprises from the Czech Republic. Statistical analysis showed that higher productivity and production volume are the main advantages of Industry 4.0. The present results show differences between enterprises according to their size. However, differences related to the technological complexity of enterprises have not been confirmed as an essential factor.
Go to article

Authors and Affiliations

Martin Pech
1
ORCID: ORCID
Drahoš Vaněček
ORCID: ORCID

  1. University of South Bohemia in Ceske Budejovice, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This study is aimed at investigating the functionality of Visual Performance Management (VPM), along with determining the necessary features such a method should demonstrate to be an effective and meaningful tool for the development of Lean Management in an organisation. Based on the analysis of a case study in a large manufacturing organisation, a crosscutting assessment of such a system was made, a literature review proves the lack of such a comprehensive study. Six critical features of VPM were identified, they are very practical and giving many interesting insights into studied Lean method. The view emerged from empirical investigated shows VPM as of the wider functionality then only visual information exchange methodology. The VPM serves as cascade information exchange system and has substantial potential to support employee’s participation.
Go to article

Authors and Affiliations

Wiesław Urban
1
ORCID: ORCID
Artur Zawadzki
1

  1. Bialystok University of Technology, Faculty of Management Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the most popular heuristics used to solve the permutation flowshop scheduling problem (PFSP) is the NEH algorithm. The reasons for the NEH popularity are its simplicity, short calculation time, and good-quality approximations of the optimal solution for a wide range of PFSP instances. Since its development, many works have been published analysing various aspects of its performance and proposing its improvements. The NEH algorithm includes, however, one unspecified and unexamined feature that is related to the order of jobs with equal values of total processing time in an initial sequence. We examined this NEH aspect using all instances from Taillard’s and VRF benchmark sets. As presented in this paper, the sorting operation has a significant impact on the results obtained by the NEH algorithm. The reason for this is primarily the input sequence of jobs, but also the sorting algorithm itself. Following this observation, we have proposed two modifications of the original NEH algorithm dealing with sequencing of jobs with equal total processing time. Unfortunately, the simple procedures used did not always give better results than the classical NEH algorithm, which means that the problem of sequencing jobs with equal total processing time needs a smart approach and this is one of the promising directions for further research.
Go to article

Authors and Affiliations

Radosław Puka
1
Jan Duda
1
A. Stawowy
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Management Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The new industrial era, industry 4.0, leans on Cyber Physical Systems CPS. It is an emergent approach of Production System design that consists of the intimate integration between physical processes and information computation and communication systems. The CPSs redefine the decision-making process in shop floor level to reach an intelligent shop floor control. The scheduling is one of the most important shop floor control functions. In this paper, we propose a cooperative scheduling based on multi-agents modelling for Cyber Physical Production Systems. To validate this approach, we describe a use case in which we implement a scheduling module within a flexible machining cell control tool.
Go to article

Authors and Affiliations

Hassan Khadiri
1
Souhail Sekkat
2
Brahim Herrou
3

  1. Sidi Mohamed Ben Abdellah University, Laboratory of Industrial Technologies, Morocco
  2. Moulay Ismail University, ENSAM-Meknes, Morocco
  3. Sidi Mohamed Ben Abdellah University, Superior School of Technology, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The paper considers the negative pandemic-type demand shocks in the mean-variance newsvendor problem. It extends the previous results to investigate the case when the actual additive demand may attain negative values due to high prices or considerable, negative demand shocks. The results indicate that the general optimal solution may differ to the solution corresponding exclusively to the non-negative realizations of demand.
Go to article

Authors and Affiliations

Milena Bieniek
1

  1. Maria Curie-Sklodowska University, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to develop a prioritizing and scheduling method to be followed in small and medium-sized companies operating under conditions of non-rhythmic and nonrepeatable production. A system in which make to stock, make to order and engineer to order (MTS, MTO and ETO) tasks are carried out concurrently, referred to as a non-homogenous system, has been considered. Particular types of tasks have different priority indicators. Processes involved in the implementation of these tasks are dependent processes, which compete for access to resources. The work is based on the assumption that the developed procedure should be a universal tool that can be easily used by planners. It should also eliminate the intuitive manner of prioritizing tasks while providing a fast and easy to calculate way of obtaining an answer, i.e. a ready plan or schedule. As orders enter the system on an ongoing basis, the created plan and schedule should enable fast analysis of the result and make it possible to implement subsequent orders appearing in the system. The investigations were based on data from the non-homogenous production system functioning at the Experimental Plant of the Łukasiewicz Research Network – Institute of Ceramics and Building Materials, Refractory Materials Division – ICIMB. The developed procedure includes the following steps: 1 – Initial estimation of resource availability, 2 – MTS tasks planning, 3 – Production system capacity analysis, 4 – ETO tasks planning, 5 – MTO orders planning, 6 – Evaluation of the obtained schedule. The scheduling procedure is supported by KbRS (Knowledge-based Rescheduling System), which has been modified in functional terms for the needs of this work assumption.
Go to article

Authors and Affiliations

Bożena Skołud
1
Agnieszka Szopa
2
Krzysztof Kalinowski
1

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Poland
  2. The Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Horizontal Directional Drilling (HDD) is a very complex technology. Although the installation of pipelines by means of this technology is often successful, examples of unsuccessful projects are also known. Due to the complexity of the technology, with the interaction of multiple processes, risks related to uncertainties in these processes play important role. These risks are related to the variability of underground strata, changing natural environment, changes in economic environment, as well as limitations of the equipment, technical disruptions and human factors. This paper describes the risk evaluation results of the FMEA and a Pareto– Lorenz analysis for 14 external risk factors (8 natural or environmental risk factors as well as 6 economic risk factors) in HDD technology. In the proposed approach not only the probability of the external risk factor occurrence was considered, but also its consequences and the ability to detect faults, which were not plainly separated and taken into account in the literature so far. Such an approach has shown the relationship between occurrence, severity and detection for the analysed external failures. Moreover, 40 detection possibilities for the external risks in HDD technology were identified. The calculated risk priority numbers enabled ranking HDD external failures and identified the most critical risks for which the suggested detection options were unsatisfactory and insufficient, and therefore other types of risk response actions need to be explored.
Go to article

Authors and Affiliations

Maria Krechowicz
1
ORCID: ORCID
Wacław Gierulski
1
ORCID: ORCID
Stephen Loneragan
2
Henk Kruse
3

  1. Kielce University of Technology, Faculty of Management and Computer Modelling, Poland
  2. HDD Engineering, Australia
  3. Deltares, the Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The purpose of servitization is to provide new business opportunities mainly to manufacturing companies. Companies strive to develop new services through utilizing servitization models, which are required to be applicable in several servitization scenarios. The main objective of this study is to propose a servitization model, known as “end-to-end servitization model” suitable for servitization purposes in companies. The model was developed based on several validated and commonly utilized service design models. Moreover, testing the validity of the model was implemented with the usability survey (usefulness, ease to use, easy of learning and satisfaction) with the Master’s level students, while they were developing new services by utilizing the proposed model. The results of this study indicate that the proposed servitization model can be utilized in different organizations to provide new services. Furthermore, the model can be concluded as useful, easy to use, easy to learn and it is at a satisfactory level based on the empirical evidence.
Go to article

Authors and Affiliations

Ari Sivula
1 2
Ahm Shamsuzzoha
2
Emmanuel Ndzibah
2
Binod Timilsina
2

  1. Seinäjoki University of Applied Sciences, Finland
  2. University of Vaasa, School of Technology and Innovations, Finland
Download PDF Download RIS Download Bibtex

Abstract

The automotive industry is a highly competitive sector. Manufacturers must effectively control highly complex production processes in order to fulfil all customer orders for customized cars on time, on budget and to the required quality. In this paper, the authors focus on improving the flow time of asynchronous automotive assembly lines by reducing the buffer time. A simulation-search heuristic procedure was developed and confirmed in a 5 workstations asynchronous assembly line installed in an automotive company. The proposed procedure identifies optimal performing buffer profiles for each storage level which guarantees lowest flow time while keeping the same throughput level. Experiments results show that our new algorithm significantly outperforms existing results, especially for large scale problems.
Go to article

Authors and Affiliations

Salah Eddine Ayoub El Ahmadi
1
Laila El Abbadi
1

  1. Engineering Sciences Laboratory, National School of Applied Sciences, Ibn Tofail University, Kenitra, Morocco

Instructions for authors

REVIEW PROCESS

Received manuscripts are first examined by the Management and Production Engineering Review Editors.
Manuscripts clearly not suitable for publication, incomplete or not prepared in the required style will be sent back to the authors without scientific review, but may be resubmitted as soon as they have been corrected.
The corresponding author will be notified by e-mail when the manuscript is registered at the Editorial Office (https://www.editorialsystem.com/mper/). The responsible editor will make the decision either to send the manuscript to another reviewer to resolve the difference of opinion or return it to the authors for revision. The ultimate decision to accept, accept subject to correction, or reject a manuscript lies within the prerogative of the Editor-in-Chief and is not subject to appeal. The editors are not obligated to justify their decision.
All manuscripts submitted to MPER editorial system ( https://www.editorialsystem.com/mper/) will be sent to at least two and in some cases three reviewers for passing the double-blind review process.
The material formatted in the MPER format must be unpublished and not under submission elsewhere.

REVIEWERS
Once a year a list of co-operating reviewers is publish in electronic version of MPER. All articles published in MPER are published in open access.


APC
In order to provide free access to readers, and to cover the costs of copyediting, typesetting, long-term archiving, and journal management, an article processing charge (APC) of 800 PLN (about 180 Euro, VAT included) for 10-page article applies to papers accepted after peer review. Each additional page of the article (over 10 pages) costs 80 PLN (about 18 Euro, VAT included).
Maximum length of the article is 18 pages (using MPER template).
There is no submission charge.

Guidelines for Authors

Template for Authors





Additional info

The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.

Publication Ethics Policy

The ethics statements for the journal Management and Production Engineering Review are based on the guidelines of Committee on publication ethics (COPE) and the ELSEVIER publishing ethics resource kit.
For Authors: All articles, published in the journal Management and Production Engineering Review have to comprise a list of references which correspond with the journal’s Instructions to authors for paper preparation. The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted. All articles are tested using antyplagiarism programme. An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable. Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. The corresponding author should ensure that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication. All authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. All sources of financial support for the project should be disclosed.
Authors are accountable for the originality, validity and integrity of the content of their submissions. In choosing to use AI tools, authors are expected to do so responsibly and in accordance with our editorial policies on authorship and principles of publishing ethics. Authorship requires taking accountability for content, consenting to publication via an author publishing agreement, giving contractual assurances about the integrity of the work, among other principles. These are uniquely human responsibilities that cannot be undertaken by AI tools. Therefore, AI tools must not be listed as an author. Authors must, however, acknowledge all sources and contributors included in their work. Where AI tools are used, such use must be acknowledged and documented appropriately.
For Editor-in-Chief: The editor is responsible for decision which of the articles submitted to the journal should be published. The editor and editorial board and office must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher, as appropriate. Unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author.
For Reviewers: Peer review helps the editor in making editorial decisions and also assist the author in improving the paper. Any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process. Any manuscripts received for review must be treated as confidential documents. They must not be shown to or discussed with others except as authorized by the editor. Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should identify relevant published work that has not been cited by the authors. Any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. A reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge. Information obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers. Other sources: http://apem-journal.org/


Peer-review Procedure

Received manuscripts are first examined by the Management and Production Engineering Review Editors. Manuscripts clearly not suitable for publication, incomplete or not prepared in the required style will be sent back to the authors without scientific review, but may be resubmitted as soon as they have been corrected. The corresponding author will be notified by e-mail when the manuscript is registered at the Editorial Office (marta.grabowska@put.poznan.pl; mper@put.poznan.pl). The ultimate decision to accept, accept subject to correction, or reject a manuscript lies within the prerogative of the Editor-in-Chief and is not subject to appeal. The editors are not obligated to justify their decision. All manuscripts submitted to MPER editorial office (https://www.editorialsystem.com/mper/) will be sent to at least two and in some cases three reviewers for passing the double-blind review process. The responsible editor will make the decision either to send the manuscript to another reviewer to resolve the difference of opinion or return it to the authors for revision.

The average time during which the preliminary assessment of manuscripts is conducted - 14 days
The average time during which the reviews of manuscripts are conducted - 6 months
The average time in which the article is published - 8.4 months

Reviewers

2024
No Name Surname Affiliation
1 Abd El-Rahman Abd El-Raouf Ahmed Agricultural Engineering, Agricultural Engineering Research Institute, Giza , Egypr
2 Wiktor Adamus Jagiellonian University, Poland
3 Shoaib Akhtar Fatima Jinnah Women University, Pakistan
4 Mohammad Al-Adaileh "COLLEGE OF ENGINEERING Engineering, Technology, and Management Assistant Professor of Instruction, United States"
5 Hind Ali University of Technology, Iraq
6 Katarzyna Antosz Rzeszow University of Technology, Poland
7 Muhammad Asrol Binus University, Indonesia
8 Lucia Bednarova Technical University of Kosice, Slovak Republic
9 Haniyah Bilal Haverford university, United States
10 Berihun Bizuneh "Bahir Dar University Bahir Dar Univ, Ethiopian Inst Text & Fash Technol, Bahir Dar, Ethiopia, Ethiopia"
11 Łukasz Brzeziński Katedra Organizacji i Zarządzania, Wyższa Szkoła Logistyki w Poznaniu, Poland
12 Waldemar Budner Katedra Logistyki, Uniwersytet Ekonomiczny w Poznaniu, Poland
13 Anna Burduk Wrocław University of Science and Technology, Poland
14 Vishnu C R Department of Humanities and Social Sciences, Indian Institute of Technology Tirupati, India
15 Fatih Çetin Başkent Üniversitesi, Turkey
16 Danylo Cherevatskyi Institute of Industrial Economics of NAS of Ukraine: Kiev, UA, Ukraine
17 Claudiu Cicea Bucharest University of Economic Studies Romania, Romania
18 Hasan Huseyin Coban Department of Electrical Engineering, Bartin University, Turkey
19 Juan Cogollo-Florez Universidad Nacional de Colombia, Colombia
20 David Coopler Universitat Politècnica de València, Romania
21 Ömer Cora Karadeniz Technical University, Turkey
22 Margareta Coteata Gheorghe Asachi Technical University of Iasi, Department of Manufacturing Engineering, Romania
23 Szymon Cyfert Poznań University of Economics and Business, Poland
24 Valentina Di Pasquale Department of Industrial Engineering, University of Salerno, Italy
25 Milan Edl University of West Bohemia, Czech Republic
26 Luis Edwards Cornell University, United States
27 Joanna Ejdys Bialystok University of Technology, Poland
28 Abdellah El barkany Sidi Mohamed Ben Abdellah University Faculty of Science and Technology of Fez, Morocco
29 Chiara Franciosi CRAN UMR 7039, Université de Lorraine, France
30 Mose Gallo Materials and Industrial Production Engineering, University of Napoli Federico, Italy
31 Tetiana Galushkina State Ecological Academy of Postgraduate Education and Management, Ukraine
32 Józef Gawlik Cracow University of Technology, Institut of Production Engineering, Poland
33 Rohollah Ghasemi, College of Management, University of Tehran, Iran
34 Arkadiusz Gola, Lublin University of Technology, Faculty of Mechanical Engineering, Poland
35 Alireza Goli Department of industrial engineering, Yazd university, Yazd, Iran
36 Magdalena Graczyk-Kucharska, Politechnika Poznańska, Poland
37 Adriana Grenčíková Industry 4.0, Human factor, Ergonomic, Slovak Republic
38 Patrik Grznár, Department of Industrial Engineering, University of Žilina Faculty of Mechanical Engineering, Slovak Republic
39 Anouar Hallioui INTI International University, Malaysia
40 Adam Hamrol Mechanical Engineering, Poznan University of Technology, Poland
41 ni luh putu hariastuti itats, Indonesia
42 Paula Heliodoro, Polytechnic Institute of Setubal, Portugal
43 Vitalii Ivanov Department of Manufacturing Engineering, Machines and Tools, Sumy State University, Ukraine
44 Ali Jaboob Dhofar University, Oman
45 Zamberi Jamaludin Universiti Teknikal Malaysia Melaka, Malaysia
46 Izabela Jonek-Kowalska, Wydział Organizacji i Zarządzania Politechnika Śląska, Poland
47 Satishbabu ACE India
48 Prasad Kanaka Institute of Industrial Relations and Human Resource Development, India
49 Anna Karwasz Poznan University of Technology, Poland
50 Waldemar Karwowski University of Central Florida, United States
51 Osmo Kauppila University of Oulu, Finland
52 Tauno Kekale Merinova Technology Centre, Finland
53 Mahmoud Khedr Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt, Egypt
54 Peter Kostal Department of Production Systems, Metrology and Asembly, Slovenská Technická Univerzita V Bratislave, Faculty of Material Science and Technology, Slovak Republic
55 Boris Kostow University of Angela Kyncheva in Ruse, Bulgaria
56 Martin Krajčovič, University of Žilina, Faculty of Mechanical Engineering, Slovak Republic
57 Caroline  Kristian Uppsala University, Sweden
58 Robert Kucęba Wydział Zarządzania, Politechnika Częstochowska, Poland
59 Agnieszka Kujawińska Poznan University of Technology
60 Edyta Kulej-Dudek Politechnika Częstochowska, Poland
61 Bhakaporn Kuljirundhorn Foxford University, Canada
62 Rajeev Kumar Doon University, India
63 Sławomir Kłos Institute of Mechanical Engineering, University of Zielona Góra, Poland
64 Yu Lee National Tsing Hua University, Taiwan
65 Anna Lewandowska-Ciszek Department of Logistics, Poznań University of Economics and Business, Poland
66 Wojciech Lewicki West Pomeranian University of Technology in Szczecin, Poland
67 Tetiana Likhouzova National Technical University of Ukraine, “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
68 Damjan Maletič University of Maribor, Faculty of Organizational Sciences, Slovenia
69 Marcela Malindzakova Technical University, Slovak Republic
70 Ildiko Mankova Technical University of Košice, Slovakia
71 Arnaud  Marcelline University of Nantes, France
72 Józef Matuszek University of Bielsko-Biała, Poland
73 Marcin Matuszny Department of Production Engineering, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, ul. Willowa 2, 43-300 Bielsko-Biała
74 Giovanni Mazzuto Università Politecnica Delle Marche, Italy
75 Tomasz Małkus Uniwersytet Ekonomiczny w Krakowie, Katedra Procesu Zarządzania, Poland, Poland
76 Rafał Michalski Katedra Systemów Zarządzania i Rozwoju Organizacji, Politechnika Wrocławska, Poland
77 Jerzy Mikulik AGH University of Krakow, Poland
78 Rami Mokao MIS - Management Information Systems, HIAST, Syria
79 Norsyahida Mokhtar International Islamic University Malaysia, Malaysia
80 Ig. Jaka Mulyana Industrial Engineering, Widya Mandala Surabaya Catholic University, Indonesia
81 Nor Hasrul Akhmal Ngadiman School of Mechanical Engineering, Universiti Teknologi Malaysia, Malaysia
82 Duc Duy Nguyen Department of Industrial Systems Engineering, Ho Chi Minh Technology University (HCMUT), Viet Nam
83 fernando Nino Polytechnic University of San Luis Potos, Mexico
84 Filscha Nurprihatin Sampoerna University, Indonesia
85 Rebecca Oliver Stockton University, United States
86 Anita Pavlenko Kryvyi Rih State University of Economics and Technology, Ukraine
87 Aleksandar Pesic, MB University, Faculty of Business and Law, Belgrade, Serbia, Serbia
88 Huy Phan Education Technology University, Vietnam, Viet Nam
89 Anna Piekarczyk Poznan School of Logistics (WSL), Poland
90 Alin Pop University of Oradea, Romania
91 Humiras Purba Industrial Engineering, Associate Professor, Universitas Mercu Buana, Jakarta, Indonesia, Indonesia
92 Tengku nur Azila Raja Mamat Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia
93 Silvijo  Renato University of Rijeka, Croatia
94 Piotr Rogala Department of Quality and Environmental Management, Wroclaw University of Economics and Business, Poland
95 Michał Rogalewicz, Faculty of Mechanical Engineering, Poznan University of Technology, Poland
96 Izabela Rojek Institute of Computer Science, Kazimierz Wielki University, Poland
97 Adam Sadowski Katedra Strategii i Zarządzania Wartością Przedsiębiorstwa, Uniwersytet Łódzki, Poland
98 Mansia Sadyrova Al-Farabi Kazakh National University, Kazakhstan
99 Nadia Saeed University of the Punjab, Pakistan
100 Sebastian Saniuk Uniwersytet Zielonogórski, Poland
101 Krzysztof Santarek Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Poland
102 shankar sehgal Panjab University Chandigarh, India
103 Piotr Senkus University of Warsaw, Poland
104 Jarosław Sęp Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa, Poland
105 Robert Sika Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Poland
106 Dariusz Sobotkiewicz Instytut Nauk o Zarządzaniu i Jakości, Uniwersytet Zielonogórski, Poland
107 Beata Starzyńska Poznan University of Technology
108 Klaudia Tomaszewska Faculty of Management Engineering, Bialystok University of Technology, Poland
109 Stefan Trzcielinski Poznan University of Technology, Poland
110 Cang Vo Binh Duong University, Viet Nam
111 Somporn Vongpeang Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Thailand
112 Jaroslav Vrchota University of South Bohemia České Budějovice, Faculty of Economics, Czech Republic
113 Gerhard-Wilhelm Weber Poznań University of Technology, Poland
114 Ewa Więcek-Janka Wydział Inżynierii Zarządzania, Politechnika Poznańska, Poland
115 Linda Winters Czech University of Life Sciences, Czech Republic
116 Zbigniew Wisniewski Lodz University of Technology, Poland
117 Piotr Wróblewski Faculty of Engineering, University of Technology and Economics H. Chodkowska in Warsaw, Poland
118 Iseul  Young Hanyang University, Korea (South)
119 Chong Zhan Hubei University, China
120 Sylwia Łęgowik-Świącik Czestochowa University of Technology Poland, Poland


2025
No. Name Surname Affiliation
1 akshat gaurav akshat Asia University, Taiwan
2 luma Al-kindi University of Technology, Iraq
3 Hind Ali University of Technology, Iraq
4 Katarzyna Antosz Rzeszow University of Technology, Poland
5 Gilmar Batalha Universidade de Sao PauloUniv Sao Paulo, Mech Engn Dept, Escola Politecn, Sao Paulo, SP, Brazil, Brazil
6 Lucia Bednarova Technical University of Kosice, Slovak Republic
7 Anna Burduk Wrocław University of Science and Technology, Poland
8 Danylo Cherevatskyi Institute of Industrial Economics of NAS of Ukraine: Kiev, UA, Ukraine
9 Dorota Czarnecka-Komorowska Faculty of Mechanical Engineering, Poznan University of Technology, Poland
10 SUGANYA Devi National Institute of Technology,Silchar, India
11 Jacek Diakun Poznan University of Technology, Poland
12 Milan Edl University of West Bohemia, Czech Republic
13 João Furtado Santa Cruz do Sul University, Brazil
14 Bożena Gajdzik "Politechnika Śląska Wydział Inżynierii Materiałowej Katedra Informatyki Przemysłowej, Poland"
15 Mose Gallo Materials and Industrial Production Engineering, University of Napoli Federico, Italy
16 Remigiusz Gawlik Department of Public Management, Krakow University of Economics (KUE), Poland
17 Raja Reddy GNV University of Saskatchewan, Canada
18 Arkadiusz Gola Department of Production Informatisation and Robotisation, Lublin University of Technology,Poland
19 Alireza Goli Department of industrial engineering, Yazd university, Yazd, Iran Iran, Iran
20 Cristian Gómez Universidad Nacional de Colombia, Colombia
21 José-Armando HIDALGO CRESPO ENSAM, Spain
22 Magdalena HRYB Faculty of Mechanical Engineering, Poznan University of Technology, Poland
23 Katarzyna Hys Opole University of Technology, Poland
24 Izabela Jonek-Kowalska "Wydział Organizacji i Zarządzania Politechnika Śląska, Poland"
25 Amirhossein Karamoozian, University of Chinese Academy of Sciences, China
26 Anna Karwasz Poznan University of Technology, Poland
27 khaoula khlie Liwa college, Morocco
28 Jerzy Kisilowski
29 Peter Kostal, Slovenská Technická Univerzita V Bratislave, Faculty of Material Science and Technology, Slovak Republic
30 Herbert Kotzab Institute for Logistics and Supply Chain Management, University of Bremen, Germany
31 Martin Krajčovič University of Žilina, Faculty of Mechanical Engineering, Slovak Republic
32 Krzysztof Krystosiak Toronto Metropolitan University, Graphic Communications Management, Canada
33 Wiesław Kuczko Poznan University of Technology, Poland
34 Agnieszka Kujawińska Poznan University of Technology, Poland
35 Edyta Kulej-Dudek Politechnika Częstochowska, Poland
36 Anup Kumar Inst Management Technol NagpurInst Management Technol Nagpur, Nagpur, Maharashtra, India, India
37 Sławomir Kłos Institute of Mechanical Engineering, University of Zielona Góra, Poland
38 Quynh Le Song Thanh Ho Chi Minh Technology University, Viet Nam
39 Yu Lee National Tsing Hua University, Taiwan
40 Stanisław Legutko Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland, Poland
41 Anna Lewandowska-Ciszek Department of Logistics, Poznań University of Economics and Business, Poland
42 José Machado University of Minho · School of Engineering, Portugal
43 Damjan Maletič University of Maribor, Faculty of Organizational Sciences, Slovenia
44 Marcela Malindzakova Technical University, Slovak Republic
45 Tomasz Malkus Department of Management Process, Cracow University of Economics, Poland
46 Mengistu Manaye, Kombolcha Institute of Technology, Wollo University, Ethiopia, Ethiopia
47 Marcin Matuszny, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Poland
48 Tomasz Małkus, Uniwersytet Ekonomiczny w Krakowie, Katedra Procesu Zarządzania, Poland, Poland
49 Rami Mokao MIS - Management Information Systems, HIAST, Syria
50 Beata Mrugalska Poznan University of Technology, Poland
51 Ig. Jaka Mulyana Industrial Engineering, Widya Mandala Surabaya Catholic University, Indonesia
52 fernando Nino Polytechnic University of San Luis Potos, Mexico
53 Shimon Nof Purdue University, United States
54 Hana Pacaiová KLI, Faculty of Mechanical Engineering, Faculty of Aeronautics, Technical University of Košice, Slovak Republic
55 Arun Kiran Pal Printing Engineering Department, Jadavpur University, India
56 Michal Patak University of Pardubice, Czech Republic
57 Ivan Pavlenko Department of General Mechanics and Machine Dynamics, Sumy State University, Ukraine
58 Miriam Pekarcikova Department of industrial and digital engineering, Technical University of Košice, Faculty of Mechanical Engineering, Slovak Republic
59 Alin Pop University of Oradea, Romania
60 Praveen Prabhu School of Engineering and Technology, Shivaji University, Kolhapur., India
61 Humiras Purba Industrial Engineering, Associate Professor, Universitas Mercu Buana, Jakarta, Indonesia, Indonesia
62 Paulina Rewers Faculty of Mechanical Engineering, Poznań University of Technology, Poland
63 Michał Rogalewicz Division of Production Engineering, Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poland
64 Izabela Rojek Institute of Computer Science, Kazimierz Wielki University, Poland
65 David Romero Tecnológico de Monterrey, Mexico
66 Adam Sadowski Katedra Strategii i Zarządzania Wartością Przedsiębiorstwa, Uniwersytet Łódzki, Poland
67 Abdu Salam Abdul Wali Khan Univ MardanAbdul Wali Khan Univ Mardan, Dept Comp Sci, Mardan 23200, Pakistan, Pakistan
68 fernando sampaio KMITL, Brazil
69 Sebastian Saniuk Uniwersytet Zielonogórski, Poland
70 Iman Sharaf "Higher Technological Institute - Egypt Higher Technol Inst, Dept Basic Sci, Cairo, Egypt, Egypt"
71 Robert Sika Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Poland
72 Beata Starzyńska Poznan University of Technology
73 Robert Ulewicz Politechnika Częstochowska, Poland
74 Wiesław Urban Politechnika Białostocka, Poland
75 Cang Vo Binh Duong University, Viet Nam
76 Jaroslav Vrchota University of South Bohemia České Budějovice, Czech Republic
77 Ewa Więcek-Janka Wydział Inżynierii Zarządzania, Politechnika Poznańska, Poland
78 Sylwia Łęgowik-Świącik Czestochowa University of Technology Poland, Poland

This page uses 'cookies'. Learn more