The perovskites XBiO3 (X = Al, Ga, In) have been studied in terms of mechanical, optical and thermoelectric behavior for energy harvesting application. Density functional theory is applied to study electronic, optical and thermoelectric properties of the studied materials. Structural, mechanical and thermodynamic stabilities are confirmed from the tolerance factor, Born mechanical stability and formation energy/specific heat capacity. Poisson and Plough ratios show the studied materials are ductile and have ability to withstand pressure. Band structure analysis shows the indirect band gap 3.0/2.1/1.0 eV for ABO/GBO/IBO. A complete set of optical spectra is reported by dielectric constants, refractive index, optical conduction, absorption of light and optical loss energy. Shifting of maximum absorption band to visible region increases the potential of perovskites XBiO3. Transport characteristics are also investigated by electrical conductivity, Seebeck coefficient and figure of merit.
The presented article examines aspects of a PV module testing using natural sunlight in outdoor conditions. The article discusses the physical sense of indexes: atmosphere purity, diffused component content, beam clear sky index. Procedures for their determination are given in relation to both instantaneous and daily values. Their close connection with the values of solar irradiance spectral distribution such as Average Photon Energy and Useful Fraction is demonstrated, as well as their usefulness in module testing in outdoor conditions. Their influence on the conversion of modules made from various absorbers and various technologies is demonstrated
This article proposes and examines a solution in which the base-station for the fifth generation radio access network is simplified by using a single millimeter-wave oscillator in the central-station and distributing its millimeter-wave signal to the base-stations. The system is designed in such a way that the low-phase-noise signal generated by an opto-electronic oscillator is transmitted from the central-station to multiple base-stations via a passive optical network infrastructure. A novel flexible approach with a single-loop opto-electronic oscillator at the transmitting end and a tunable dispersion-compensation module at the receiving end(s) is proposed to distribute a power-penalty-free millimeter-wave signal in the radio access network. Power-penalty-free signal transmission from 10 MHz up to 45 GHz with an optical length of 20 km is achieved by a combination of a tunable dispersion-compensation module and an optical delay line. In addition, measurements with a fixed modulation frequency of 39 GHz and discretely incrementing optical fiber lengths from 0.625 km to 20 km are shown. Finally, a preliminary idea for an automatically controlled feedback-loop tuning system is proposed as a further research entry point.
The solar photovoltaic technology is one of the renewable technologies with the potential to shape a future-proof, reliable, scalable and affordable electricity system. It is important to provide better resources for any upcoming technology. CdS/CdTe thin films have long been considered as one enticing option for reliable and cost-effective solar cells to be developed. N-type CdS as a transparent window layer in heterojunction structures is one of the best choices for CdTe cells. In a solar cell structure, window layer material plays a very crucial role to improve its performance. For this reason, this review focuses on the basic and significant aspects such as importance of the window layer thickness, degradation effect, use of nano-wire arrays, and an ammonia-free process to deposit the window layer. Also, an attempt has been made to analyze various processes improving window layer properties. Necessary discussions have been included to review the impact of solar cell parameters on the above aspects. It is anticipated that this review article will fulfill the requirement of knowledge to be used in the fabrication of CdS/CdTe solar cells.
Guide for Authors
https://www.editorialsystem.com/opelre/journal/for_authors/
OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)
As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)
Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)
Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).
Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.
Articles are published in OPELRE in the following categories:
-invited reviews presenting the current state of the knowledge,
-specialized topics at the forefront of optoelectronics and photonics and their applications,
-refereed research contributions reporting on original scientific or technological achievements,
-conference papers printed in normal issues as invited or contributed papers.
Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.
Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.
Abstracting and Indexing:
Arianta
BazTech
EBSCO relevant databases
EBSCO Discovery Service
SCOPUS relevant databases
ProQuest relevant databases
Clarivate Analytics relevant databases
WangFang
additionally:
ProQuesta (Ex Libris, Ulrich, Summon)
Google Scholar
Policies and ethics:
The editors of the journal place particular emphasis on compliance with the following principles:
Ethical policy of Opto-Electronics Review
The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).
Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.
Research results
Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.
Authorship
All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.
Competing interests
All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.
Peer Review
We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.
Characteristics of the peer review process are as follows:
• Simultaneous submissions of the same manuscript to different journals will not be tolerated.
• Manuscripts with contents outside the scope will not be considered for review.
• Opto-Electronics Review is a single-blind review journal.
• Papers will be refereed by at least 2 experts as suggested by the editorial board.
• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.
• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.
• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.
• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.
• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.
• Personal criticism is inappropriate.
Plagiarism
Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.
Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).
Duplicate submission
Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.
Corrections and retractions
All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.
• The journal will issue retractions if:
• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);
• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);
• It constitutes plagiarism;
• It reports unethical research.
• The journal will issue errata, if:
• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);
• The author list is incorrect.
Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.
The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.
Human and Animal Rights
If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.
All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.