Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2016 | vol. 24 | No 2

Download PDF Download RIS Download Bibtex

Abstract

In this study a metal clad waveguide sensor with a metamaterial guiding layer is analyzed. Sensitivity of the proposed sensor is derived using dispersion and Fresenal’s equations for waveguiding mode and reflection mode. While efficiently analyzing and comparing the results with the existing one, some interesting findings are achieved. It is observed that the proposed sensor shows larger cover layer sensitivity and larger adlayer sensitivity compared to the dielectric guiding layer sensor due to adsorbtive properties of metamaterial. Henceforth, it concludes that the proposed sensor shows sensitivity improvement over a dielectric guiding layer sensor.

Go to article

Authors and Affiliations

A. Upadhyay
Y.K. Prajapati
R. Tripathi
V. Singh
J.P. Saini
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.

Go to article

Authors and Affiliations

L. Bychto
M. Maliński
Download PDF Download RIS Download Bibtex

Abstract

Optical sampling based on ultrafast optical nonlinearities is a useful technique to monitor the waveforms of ultrashort optical pulses. In this paper, we present a new implementation of optical waveform sampling systems by employing our newly constructed free-running mode-locked fibre laser with a tunable repetition rate and a low timing jitter, an all-optical waveform sampler with a highly nonlinear fibre (HNLF), and our developed computer algorithm for optical waveform display and measurement, respectively. Using a femtosecond fibre laser to generate the highly stable optical sampling pulses and exploiting the four-wave mixing effect in a 100 m-long HNLF, we successfully demonstrate the all-optical waveform sampling of a 10 GHz optical clock pulse sequence with a pulse width of 1.8 ps and a 80 Gbit/s optical data signal, respectively. The experimental results show that waveforms of the tested optical pulse signals are accurately reproduced with a pulse width of 2.0 ps. This corresponds to a temporal resolution of 0.87 ps for optical waveform measurement. Moreover, the optical eye diagram of a 10Gbit/s optical data signal with a 1.8 ps pulse width is also accurately measured by employing our developed optical sampling system.

Go to article

Authors and Affiliations

Y. Liu
Y.G. Zhang
D. Tang
Download PDF Download RIS Download Bibtex

Abstract

Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.

Go to article

Authors and Affiliations

T. Stacewicz
Z. Bielecki
J. Wojtas
P. Magryta
J. Mikolajczyk
D. Szabra
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/opelre/journal/for_authors/

OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)

As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)

Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)

Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).

Additional info

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Arianta

BazTech

EBSCO relevant databases

EBSCO Discovery Service

SCOPUS relevant databases

ProQuest relevant databases

Clarivate Analytics relevant databases

WangFang

additionally:

ProQuesta (Ex Libris, Ulrich, Summon)

Google Scholar

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Ethical policy of Opto-Electronics Review

The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).

Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.

Research results

Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.

Authorship

All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.

Competing interests

All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.

Peer Review

We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.

Characteristics of the peer review process are as follows:

• Simultaneous submissions of the same manuscript to different journals will not be tolerated.

• Manuscripts with contents outside the scope will not be considered for review.

• Opto-Electronics Review is a single-blind review journal.

• Papers will be refereed by at least 2 experts as suggested by the editorial board.

• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.

• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.

• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.

• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.

• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.

• Personal criticism is inappropriate.

Plagiarism

Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.

Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).

Duplicate submission

Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.

Corrections and retractions

All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.

• The journal will issue retractions if:

• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);

• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);

• It constitutes plagiarism;

• It reports unethical research.

• The journal will issue errata, if:

• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);

• The author list is incorrect.

Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.

The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.

Human and Animal Rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.

This page uses 'cookies'. Learn more