Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2023 | 31 | 1

Download PDF Download RIS Download Bibtex

Abstract

Visible light communication based on a filter bank multicarrier holds enormous promise for optical wireless communication systems, due to its high-speed and unlicensed spectrum. Moreover, visible light communication techniques greatly impact communication links for small satellites like cube satellites, and pico/nano satellites, in addition to inter-satellite communications between different satellite types in different orbits. However, the transmitted visible signal via the filter bank multicarrier has a high amount of peak-to-average power ratio, which results in severe distortion for a light emitting diode output. In this work, a scheme for enhancing the peak-to-average power ratio reduction amount is proposed. First, an algorithm based on generating two candidates signals with different peak-to-average power ratio is suggested. The signal with the lowest ratio is selected and transmitted. Second, an alternate direct current-biased approach, which is referred to as the addition reversed method, is put forth to transform transmitted signal bipolar values into actual unipolar ones. The performance is assessed through a cumulative distribution function of peak-to-average power ratio, bit error rate, power spectral density, and computational complexity. The simulation results show that, compared to other schemes in literature, the proposed scheme attains a great peak-to-average power ratio reduction and improves the bit the error rate performance with minimum complexity overhead. The proposed approach achieved about 5 dB reduction amount compared to companding technique, 5.5 dB compared to discrete cosine transform precoding, and 8 dB compared to conventional direct current bias of an optical filter bank multicarrier. Thus, the proposed scheme reduces the complexity overhead by 15.7% and 55.55% over discrete cosine transform and companding techniques, respectively.
Go to article

Authors and Affiliations

Radwa A. Roshdy
1
ORCID: ORCID
Aziza I. Hussein
2
ORCID: ORCID
Mohamed M. Mabrook
3 4
ORCID: ORCID
Mohammed A. Salem
ORCID: ORCID

  1. Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
  2. Electrical & Computer Eng. Dept., Effat University, Jeddah, Saudi Arabia
  3. Space Communication Dept., Faculty of Navigation Science & Space Technology, Beni-Suef University, Beni-Suef, Egypt
  4. Department of Communication and Computer Engineering, Faculty of Engineering, Nahda University in Beni-Suef, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The structural, morphological and photoluminescent properties of thermally evaporated neodymium oxide (Nd2O3) thin films deposited onto nanostructured silicon (Si-ns) are reported. Si-ns embedded in silicon nitride (SiN) thin films are prepared by plasma-enhanced chemical vapour deposition (PECVD). SiN and Nd2O3 thin films uniformity and Si-ns formation are confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of neodymium (Nd), silicon (Si), oxygen (O), and phosphorus (P) is investigated by energy-dispersive spectroscopy (EDS) and secondary ion mass spectrometry (SIMS). Post-annealing SIMS profile indicates an improvement of the homogeneity of activated P distribution in Si bulk. The X-ray diffraction (XRD) combined with Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR) have been employed to determine amorphous silicon (a-Si), crystalline silicon (c-Si), Nd2O3 and SiN phases present in the Nd2O3-SiN bilayers with their corresponding chemical bonds. After annealing, a Raman shift toward lower wavenumbers is recorded for the Si peak. XPS data reveal the formation of Nd2O3 thin films with Nd-O bonding incorporating trivalent Nd ions (Nd3+). Strong room-temperature photoluminescence is recorded in the visible light range from the Si-ns. Nd-related photoluminescent emission in the near infrared (NIR) range is observed at wavelengths of 1025–1031 nm and 1083 nm, and hence is expected to improve light harvesting of Si-based photovoltaic devices.
Go to article

Authors and Affiliations

Amine Mefoued
1 2
ORCID: ORCID
Bedra Mahmoudi
1
Nasser Benrekaa
2
Faiza Tiour
1
Hamid Menari
1
Abdelyamine Naitbouda
3
Amar Manseri
1
Afaf Brik
1
Salah Mezghiche
1
Moustafa Debbab
4

  1. Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger–7 merveilles, 16027 Algiers, Algeria
  2. Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 Bab-Ezzouar, 16111 Algiers, Algeria
  3. Centre de Développement des Technologies Avancées (CDTA), Cité 20 août 1956, 16081 Algiers, Algeria
  4. Université Abou Bekr Belkaid BP 230, 13000 Chetouane, Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Thermal imagers often work in extreme conditions but are typically tested under laboratory conditions. This paper presents the concept, design rules, experimental verification, and example applications of a new system able to carry out measurements of performance parameters of thermal imagers working under precisely simulated real working conditions. High accuracy of simulation has been achieved by enabling regulation of two critical parameters that define working conditions of thermal imagers: imager ambient temperature and background temperature of target of interest. The use of the new test system in the evaluation process of surveillance thermal imagers can bring about a revolution in thermal imaging metrology by allowing thermal imagers to be evaluated under simulated, real working conditions.
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID

  1.   Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cellular mobile communication networks are experiencing an important evolution with the emerging deployment of 5G networks and the successive decline in the use of previous generations in the years to come. In parallel, policies promoting ecological transition are gaining social impact and economic interest and this seems to be the trend in the near future. In the telecommunications market, the shift between two dominant generations could be an important opportunity to introduce renewable energy sources to green the sector, reducing the carbon footprint of the world-wide extended activity. This work analyses the current situation and provides an insight into the possibilities to incorporate renewable energy supplies, specifically photovoltaics (as it seems to be the most promising among clean electric sources), perhaps combined with small wind turbines in off-grid systems. Paper also compares the characteristics of standard facilities in Spain and Poland, two different European countries in terms of weather and insolation hours.
Go to article

Authors and Affiliations

Iñigo Cuiñas
1
ORCID: ORCID
Katarzyna Znajdek
2
ORCID: ORCID
Maciej Sibiński
2
ORCID: ORCID

  1. Dept. of Signal Theory and Communications, Universidade de Vigo, atlanTTic Research Center, 36310 Vigo, Spain
  2. Dept. of Semiconductor and Optoelectronic Devices, Lodz University of Technology, Wólczańska 211–215, 90-001 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Optical waveguides (WGs) are widely used as interconnects in integrated optical circuits both for telecommunication and sensing applications. There are different kind of optical WG designs that offers different guiding parameters, opening a vast number of possibilities. A silica-titania (SiO2:TiO2) rib WG is discussed and examined by a numerical analysis in this article with a great emphasis on the analysis of bending losses and optimization. A modal analysis for different basic parameters of the WG is presented with a detailed wavelength-based modal analysis. Various potential fabrication methods are discussed, however, a sol-gel method and dip-coating deposition technique are proposed for the low-cost development of such WGs. Moreover, an approach towards minimizing the bending losses by adding an upper cladding layer on the rib WG is presented and described.
Go to article

Authors and Affiliations

Muhammad Shahbaz
1
ORCID: ORCID
Łukasz Kozlowski
1
Muhammad A. Butt
1
ORCID: ORCID
Ryszard Piramidowicz
1
ORCID: ORCID

  1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

New ways of calculating narrow microparticle size distributions based on using the Tikhonov and the modified Twomey methods for the laser diffraction technique are presented. These allow to have reduced the broadening (over-smoothing) of the result occurring in these methods for narrow distributions both singular and their sum. The calculated singular distributions and their distribution sum were then approximated by a Gaussian function and a bimodal Gaussian function, respectively, using the Levenberg-Marquardt method. The angular distribution of scattering power was measured for polystyrene particles with radii of 0.676 µm and 1.573 µm, and for their sum. The tests were carried out for linearly polarized He-Ne laser light scattered by a dilute aqueous suspension of these particles. The results obtained were compared with those obtained with the nanoDS instrument (CILAS). It turned out that using the way based on the Twomey method, the parameters of the narrow distribution sought could be determined quite well.
Go to article

Authors and Affiliations

Andrzej Pawlata
1
Bartosz Bartosewicz
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/opelre/journal/for_authors/

OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)

As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)

Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)

Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).

Additional info

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Arianta

BazTech

EBSCO relevant databases

EBSCO Discovery Service

SCOPUS relevant databases

ProQuest relevant databases

Clarivate Analytics relevant databases

WangFang

additionally:

ProQuesta (Ex Libris, Ulrich, Summon)

Google Scholar

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Ethical policy of Opto-Electronics Review

The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).

Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.

Research results

Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.

Authorship

All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.

Competing interests

All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.

Peer Review

We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.

Characteristics of the peer review process are as follows:

• Simultaneous submissions of the same manuscript to different journals will not be tolerated.

• Manuscripts with contents outside the scope will not be considered for review.

• Opto-Electronics Review is a single-blind review journal.

• Papers will be refereed by at least 2 experts as suggested by the editorial board.

• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.

• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.

• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.

• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.

• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.

• Personal criticism is inappropriate.

Plagiarism

Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.

Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).

Duplicate submission

Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.

Corrections and retractions

All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.

• The journal will issue retractions if:

• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);

• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);

• It constitutes plagiarism;

• It reports unethical research.

• The journal will issue errata, if:

• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);

• The author list is incorrect.

Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.

The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.

Human and Animal Rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.

This page uses 'cookies'. Learn more