Shallow−marine deposits of the Krabbedalen Formation (Kap Dalton Group) from Kap Brewster, central East Greenland, yielded rich dinoflagellate cyst and pollen− −spore assemblages. Previously, this formation yielded also rich mollusc and foraminifer age−diagnostic assemblages. A Lower Oligocene age of the Krabbedalen Formation seems to be supported by the dinoflagellate cyst assemblage analysis, while the pollen−spore as− semblages point to a wider stratigraphic age range within Oligocene–Middle Miocene.
Research on permafrost in the Abisko area of northern Sweden date from the 1950s. A mean annual air temperature of −3°C in the Abisko mountains (i.e. 1000 m a.s.l.) and −1°C beyond the mountain area at an altitude of around 400m suggests that both moun− tain and arctic permafrost occur there. Several geophysical surveys were performed by means of resistivity tomography (ERT) and electromagnetic mapping (EM). Wherever pos− sible the geophysical survey results were calibrated by digging tests pits. The results show that permafrost occurs extensively in the mountain areas, especially those above 900m a.s.l. and also sporadically at lower altitudes. At 400 m a.s.l. permafrost may be up to 30 m thick. Its thickness and extent are determined largely by the very variable local rock and soil con− ditions. Fossil permafrost is also likely to occur in this area.
The present contribution to lichen−forming and lichenicolous biota of northern− most Billefjörden (Petuniabukta area, central Spitsbergen, Svalbard) contains 40 species of lichens. Four species: Arthonia ligniariella, Candelariella lutella, Ochrolechia upsaliensis, Polyblastia pernigrata are new for the Svalbard Archipelago.
The Panorama Point Beds represent a subfacies of the Early to Middle Permian Radok Conglomerate, which is the oldest known sedimentary unit in the Prince Charles Mountains, MacRobertson Land, East Antarctica. This unit records clastic sedimentation in fresh−water depositional system during the early stages of development of the Lambert Graben, a major structural valley surrounded by crystalline highlands in the southern part of Gondwana. It contains common siderite precipitated through early diagenetic processes in the swamp, stagnant water, and stream−flow environments. There are two types of siderite in the Panorama Point Beds: (1) disseminated cement that occurs throughout the sedimentary suc− cession; and (2) concretions that occur at recurrent horizons in fine−grained sediments. The cement is composed of Fe−depleted siderite (less than 90mol%FeCO3)with an elevated con− tent of magnesium, and trace and rare earth elements. It has negative δ13CVPDB values (−4.5 to −1.5‰). The concretions are dominated by Fe−rich siderite (more than 90mol% FeCO3),with positive δ13CVPDB values (+1 to +8‰). There are no noticeable differences in the oxygen (δ18OVPDB between −20 and −15‰) and strontium (δ87Sr/86Sr between 0.7271 and 0.7281) iso− topic compositions between the siderite types. The cement and concretions developed in the nearsurface to subsurface environment dominated by suboxic and anoxic methanic degrada− tion of organic matter, respectively. The common presence of siderite in the Panorama Point Beds suggests that fresh−water environments of the Lambert Graben were covered by vegetation, starting from the early history of its development in the Early Permian.
During laboratory and field experiments on Nacella concinna on the west coast of Admiralty Bay, King George Island (Antarctica) clear morphological and behavioural differences between two limpet forms (N. concinna polaris and N. concinna concinna) were found. They suggested presence of genetic divergence. AFLP (amplified fragment length polymorphism) profiling of N. concinna individuals representing the two forms revealed nearly 32% of polymorphic bands; only 2% of them differed between the forms. Our results suggest that the observed phenotypic variation seems to be a result of adaptation to environ− mental conditions and not of any genetic divergence.