Twelve glaciers, representing various types, were investigated between 2000 and 2005, in a region adjacent to the northern reaches of Billefjorden, central Spitsbergen ( Svalbard ). On the basis of measurements taken using reference points, DGPS and GPS systems, analyses of aerial photographs and satellite images, geomorphological indicators and archival data their rates of deglaciation following the “Little Ice Age” (LIA) maximum were calculated variously on centennial, decadal and annual time scales. As most Svalbard glaciers have debris-covered snouts, a clean ice margin was measured in the absence of debris-free ice front. The retreat rates for both types of ice fronts were very similar. All studied glaciers have been retreating since the termination of the Little Ice Age at the end of 19th century. The fastest retreat rate was observed in the case of the Nordenskiöldbreen tidewater glacier (mean average linear retreat rate 35 m a-1). For land-terminating glaciers the rates were in range of 5 to 15 m a-1. Presumably owing to climate warming, most of the glacier retreat rates have increased several fold in recent decades. The secondary factors influencing the retreat rates have been identified as: water depth at the grounding line in the case of tidewater glaciers, surging history, altitude, shape and aspect of glacier margin, and bedrock relief. The retreat rates are similar to glaciers from other parts of Spitsbergen . Analyses of available data on glacier retreat rates in Svalbard have allowed us to distinguish four major types: very dynamic, surging tidewater glaciers with post-LIA retreat rates of between 100 and 220 m a-1, other tidewater glaciers receding of a rate of 15 to 70 m a-1, land terminating valley polythermal glaciers with an average retreat of 10 to 20 m a-1 and small, usually cold, glaciers with the retreat rates below 10 m a-1.
During the late 2007 austral summer, 20 sediment samples were collected in Admiralty Bay (King George Island, South Shetlands, West Antarctica) from 8 down to 254 m water-depth (mwd). The samples yielded abundant assemblage of monothalamous benthic foraminifera, belonging to at least 40 morphospecies. They constituted the first such collection from Antarctic Peninsula fjords and provided a new insight into this group’s diversity and distribution. Among organic-walled taxa, Psammophaga sp., Allogromia cf. crystallifera, and three morphotypes of Gloiogullmia were especially abundant. Agglutinated forms were dominated by Hippocrepinella hirudinea, Psammosphaera spp., Lagenammina spp., and various mudballs. Although, the majority of the morphotypes were known from other high-latitude locations, some were reported for the first time. Our quantitative data (>125 µm) showed the greatest differences between monothalamous foraminifera assemblages at shallowest water depths above 50 mwd. The deepest assemblages from between 179 and 254 mwd, were most similar, suggesting uniform near-bottom conditions at ~200 mwd throughout the Admiralty Bay.
The common and ecologically important cyanobacterial form-genus Leptolyngbya is widely distributed in numerous ecosystems over the Earth's biosphere. Several morphospecies dominate microbial communities in polar habitats, but their diversity and local ecological significance are little known. Several articles characterising strains isolated from Antarctic coastal habitats by molecular methods were published, but knowledge of their phenotype and ecological characters are indispensable for future detailed environmental studies. Distinct morpho- and ecotypes (ecologically important morphospecies) from maritime Antarctica are characterised in this article. Eight dominant Leptolyngbya types from subaerophytic and freshwater habitats were recognised, and four of them (L. borchgrevinkii, L. fritschiana, L. nigrescens and L. vincentii) are described as new distinct species.