One of important methods used for diagnostics of a transformer’s active part is Frequency Response Analysis (FRA). It allows to determine the mechanical condition of windings, their displacements, deformations and electric faults, as well as some problems with internal leads and connections, core and bushings. Still pending problem is interpretation of measurements results. One of approaches is application of computer modeling to simulate various failure modes and connected with them changes in FRA response. The paper presents two types of models, one based on lumped parameters with RLC elements, and one based on distributed parameters with TLM method. Both methods give similar results, comparable to real measurements of simulated coil.
The minimum energy control problem for the positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by a numerical example.
The classic relationships concerning the harmonic content in the air gap field of three-phase machines are presented in form of series of rotating waves. The same approach is applied to modeling of permanent magnet motors with fractional phase windings. All main reasons of non-sinusoidal shape of flux density distribution, namely, magnets’ shape and their placement, slotting, magnetic saturation and eccentricity are also related to their counterparts in modal-frequency spectrum. The Fourier 2D spectrum of time-stepping finite element solution is confronted with results of measurements, with special attention paid to accuracy of both methods.
To study the principle of loss and heat at the end region of large 4-poles nuclear power turbine generator, 3D transient electromagnetic field and 3D steady temperature field finite element (FE) models of the end region are established respectively. Considering the factors such as rotor motion, core non-linearity and time-varying of electromagnetic field, the anisotropic heat conductivity and different heat dissipation conditions of stator end region, a 50 Hz, 1150 MW, 4-poles nuclear power turbine generator is investigated. The loss and heat at the generator end region are calculated respectively at no-load and rated-load, and the calculation results are compared with the test data. The result shows that the calculation model is accurate and the generator design is suitable. The method is valuable for the research of loss and heat at the end region of large 4-poles nuclear power turbine generator and the improvement of the generator’s operation stability. The method has been applied successfully for the design of the larger nuclear power turbine generators.
An LLCL-filter is becoming more attractive than an LCL-filter as the interface between the grid-tied inverter and the grid due to possibility of reducing the copper and the magnetic materials. The efficiency of the LLCL-filter based single-phase grid-tied inverter also excites interests for many applications. The operation of the switches of the VSI is various with different modulation methods, which lead to different efficiencies for such a single-phase grid-tied inverter system, and therefore important research has been carried out on the effect of the choice of PWM schemes. Then power losses and efficiencies of the LLCL-filter and the LCL-filter based single-phase grid-tied inverters are analyzed and compared under the discontinuous unipolar, the dual-buck and the bipolar modulations. Results show that the efficiency of LLCL-filter based inverter system is higher than the LCL- filter based independent on the modulation method adopted. Experiments on a 2 kW prototype are in good agreement with results of the theoretical analysis.
Single-branch filters are still popular and are commonly used for power quality improvement purposes. Analysis of a single-branch filter is a relatively simple task. Although individual filters tuned to specific harmonics can be easily designed, after connecting them into a group it turns out that the capacitance and inductance mutually influence each other, distorting the resulting frequency characteristics. This article presents a matrix method for design a group of single-branch filters, so that the resultant frequency characteristic satisfies the design requirements including the requirements for location of the frequency characteristic maxima. Designer indicates the frequencies of the parallel resonances.
The matrix rectifier modulated by the classical space vector modulation (SVM) strategy generates common-mode voltage (CMV). The high magnitude and high du/dt of the CMV causes serious problems such as motor damage, electromagnetic noise and many others. In this paper, an improved SVM strategy is proposed by replacing the zero vectors with suitable couple of active ones that substantially eliminate the CMV. Theoretical analysis proves that the proposed strategy can reduce the amplitude of the CMV to half of the original value. In addition, the quality of the input and output waveforms is not affected by extra active vectors. Simulation and experimental results demonstrate the feasibility and effectiveness of the proposed strategy are shown.
The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained.
The paper presents a methodology for the optimization of a Brushless Direct Current motor (BLDC). In particular it is focused on multiobjective optimization using a genetic algorithm (GA) developed in Matlab/Optimization Toolbox coupled with Maxwell from ANSYS. Optimization process was divided into two steps. The aim of the first one was to maximize the RMS torque value and to minimize the mass. The second part of the optimization process was to minimize the cogging torque by selecting proper magnet angle. The paper presents the methodology and capabilities of scripting methods rather than specific optimization results for the applied geometry.
This document contains results of research on complex motion common magnetic circuit electromagnetic converter characteristic that allows making independent axial and rotary shaft motion. The converter in addition to linear-rotary mechanism consists of two drive rotors and one common magnetic circuit excitator. Such a solution allows to reduce volume of the machine and makes it easier to use. The paper cites design intent and possible structure of the device. Phenomenon of common magnetic circuit adverse effect on correct operation of device is discussed. The concept of using relative error as a way to evaluate the influence of that phenomenon in the torques is discussed. Waveforms of determined relative errors for all possible cases is presented. Furthermore the concept of average relative error is defined and its use as a quantitative method of assessing the degree of common circuit impact is indicated. Definition of relative error ripple factor is given, and its usage is shown. Winding inductance calculation based on free FEM application is shown and its influence on control strategy and power system.
ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.
Manuscript submission:
All manuscripts should be submitted electronically on Editorial System.
Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.
Template:
Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.
While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).
The articles that don’t conform to the above will not be processed and published.
The reviewing process:
Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:
a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE
b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place
c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected
d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.
The papers are published on average within 3 months after acceptance.
Requirements for preparation of manuscripts:
The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").
All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.
If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.
The manuscripts are published on average within 3 months after their acceptance.
Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.
The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.
Text:
The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.
Math:
Please use the MathML editor as well as MathType editor to build an equation in your manuscript.
Equations:
Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.
If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.
Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.
Unit Symbols, Abbreviations:
Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.
Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.
Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".
Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."
Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard
Tables, figures (illustrations) and captions:
The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.
All figures, figure captions, and tables in the text must be inserted into the correct places.
Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.
Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.
Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.
All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.
When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.
Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).
AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.
Conclusions:
A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.
References:
References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.
Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.
You can use the rules presented on the site: IEEE standard.
Examples of the ways in which references should be cited are given below:
Journal manuscript
[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).
example
[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).
[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.
[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.
Conference manuscript
[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).
example
[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).
Book, book chapter and manual
[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).
example
[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).
Patent
[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).
example
[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).
Thesis
[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).
example
[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).
For on electronic forms
[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].
example
[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259
Website
[9] http://www.aee.put.poznan.pl, accessed April 2010.
Proofs:
Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.
Fees for printing the papers in Archives of Electrical Engineering:
AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.
The fee for the publication of an article in the AEE journal is 200 Euro.
Abstracting & Indexing:
Archives of Electrical Engineering is covered by the following services:
Preparation of manuscript for Archives of Electrical Engineering (AEE)