Nauki Techniczne

Archives of Environmental Protection

Zawartość

Archives of Environmental Protection | 2022 | vol. 48 | No 4

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aims of the current study are the physicochemical characterization, spatial assessment and monitoring of hydrocarbon contamination in quagmire of three sites (Agreb, Gassi and Zotti) in the Hassi Messaoud region (Algerian Sahara), as a result of the presence of an important oil industry rejecting industrial wastewater. Samples were obtained from three different depths for each site. Total Hydrocarbons (THC) were determined by a gravimetric method, and the four (F1:C6-C10), (F2:C10-C16), (F3:C16-C34) and F4>C34) hydrocarbon fractions and BTEX (Benzene, Toluene, Ethyl-benzene and Xylene) were determined by using gas chromatography (FID). The results obtained show a high contamination with hydrocarbons in different sites and depths. The concentrations of THC, four hydrocarbon fraction and BTEX recorded on Agreb site in different depth were in this order: 51200–120000 mg/kg d.w.; <LOD – 59500 mg/kg d.w.; 2.4–90.8 mg/kg d.w. respectively; and for Gassi site, in this order: 59600–70300 mg/kg d.w.; < LOD – 43000 mg/kg d.w.; 8.5–112 mg/kg d.w. Finely they were in the following order: 18100–19200 mg/kg d.w.; <LOD – 9130 mg/kg d.w.; 2.75–65 mg/kg d.w. for Zotti site. Statistical analysis demonstrated an important site effect of THC and the three hydrocarbon fractions except for F4. However, there is no site and depth effect for BTEX. On the other hand the depth effect is significant just for THC, F1 and F2 of hydrocarbons. This variation can be attributed to the difference of physicochemical parameters between studied sites.
Przejdź do artykułu

Bibliografia

  1. Adebiyi, F. M. & Afedia, M. O. (2011). The ecological impact of used petrochemical oils on soil properties with special reference to physicochemical and total petroleum hydrocarbon contents of soils around automobile repair workshops. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33 No. 16, pp. 1556-1565. DOI:10.1080/15567030903397883
  2. Alvarez, P. J. J. & Illman, W. A. (2005). Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models, 1st ed., Wiley-Interscience, New Jersy. DOI:10.1002/047173862x
  3. Arocena, J. M. & Rutherford, P. M. (2005). Properties of hydrocarbon- and salt contaminated flare pit soils in northeastern British Columbia (Canada). Chemosphere, Vol. 60, pp. 567-575. DOI:10.1016/J.CHEMOSPHERE.2004.12.077
  4. Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and smusels of the western Mediterranean sea. Environmental Toxicology and Chemistry, Vol. 17, pp.765–776. DOI:10.1002/ETC.5620170501
  5. Belahmadi, M. S. O., Abdessemed, A., Gherib, A., Charchar, N., Houali, K. & Houhamdi, M. (2021). Spatiotemporal assessment and monitoring of hydrocarbons contamination of water and sediments in skikda bay (Algeria). International Journal of Environmental Analytical Chemistry, pp. 1-19. DOI:10.1080/03067319.2021.1879801
  6. CCME (2001). Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in soil. CCME Council of Ministers.
  7. Clark, J.D., Serdar, B., Lee, D.J., Arheart, K., Wilkinson, J.D. & Fleming, L.E. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environmental Research, Vol. 117, pp. 132-137. DOI:10.1016/j.envres.2012.04.012
  8. Colin C. (2000). Localized pollution of soils and subsoils by hydrocarbons and chlorinated solvents. Report of the Academy of Sciences n° 44, Technique and Documentation, 1st ed., Lavoisier, Paris.
  9. Fusey, P. & Oudot, J. (1973). Note sur l’accélération de la biodégradation d’un pétrole brut par des bactéries. Material Organismen, Vol. 8, pp. 158-163.
  10. Fusey, P. & Oudot, J. (1976). Comparaison de deux méthodes d’évaluation de la biodégradation des hydrocarbures in vitro. Material Organismen. Vol. 4, pp. 241-251.
  11. Fusey, P., Lampin, M.F. & Oudot, J. (1981). Recherche sur l’élimination des hydrocarbures par voie biologique. Material Organismen. Vol. 2, pp. 109.
  12. Greene, E.A., Kay, J.G., Jaber, K., Stehmeier, L.G. & Voordouw, G. (2000). Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Applied and Environmental Microbiology, Vol. 66, pp. 5282-5289.
  13. Jiang, Z., Huang, Y., Xu, X., Liao, Y., Shou, L., Liu, J., Quan-zhen, C. & Zeng J. (2010). Advance in the toxic effects of petroleum water accommodated fraction on marine plankton. Acta Ecologica Sinica, Vol. 30, pp. 8-15. DOI:10.1128/AEM.66.12.5282-5289.2000. DOI:10.1016/J.CHNAES.2009.12.002
  14. Jung, K.H., Hsu, S.-I., Yan, B., Moors, K., Chillrud, S.N., Ross, J. & Wang, S. (2012). Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environment International, Vol. 45, pp. 44-50. DOI:10.1016/j.envint.2012.03.012
  15. Khairy, M.A., Weinstein, M.P. & Lohmann, R. (2014). Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a Tidal Rive. Environmental Science & Technology, Vol. 48, pp. 12533–12542. DOI:10.1021/es502886n
  16. Langlois, P.H., Hoyt, A.T., Lupo, P.J., Lawson, C.C., Waters, M.A., Desrosiers, T.A., Shaw, G.M., Romitti, P.A. & Lammer, E.J. (2013). Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of oral cleft-affected pregnancies. The Cleft Palate-Craniofacial Journal, Vol. 50, pp. 337-346. DOI:10.1597/12-104
  17. Mauricio-Gutiérrez A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C. & Sánchez-Alonso, M.P. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils. Archives of Environmental Protection, Vol. 46, pp. 59-69. DOI:10.24425/aep.2020.135765
  18. Moscoso, F., Deive, F.J., Longo, M.A., & Sanromán, M.A. (2012). Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresource Technology, Vol. 104, pp. 81-89. DOI:10.1016/j.biortech.2011.10.053
  19. Mozo, I., Stricot, M., Lesage, N. & Spérandio, M. (2011). Fate of hazardous aromatic substances in membrane bioreactors. Water research, Vol. 45, pp. 4551-4561. DOI:10.1016/j.watres.2011.06.005
  20. Neff, J., M., Ostazeski, S., Gardiner W. & Stejskal, I. (2000). Effects of weathering on the toxicity of three off shore Australian crude oils and a diesel fuel to marine animals. Environmental Toxicology and Chemistry, Vol. 19, No. 7, pp. 1809-1821. DOI:10.1002/ETC.5620190715
  21. Official Journal of the Algerian Republic (OJAR). Number 36, April 2006. Limit values of industrial liquid effluent discharge parameters.
  22. Ozcan, S. & Aydin, M. E. (2009). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in urban air of Konya, Turkey. Atmospheric Research, Vol. 93, pp. 715–722. DOI:10.1016/J.ATMOSRES.2009.02.012
  23. Paliulis, D. (2021). Experimental investigations of dynamic sorption of diesel from contaminated water. Archives of Environmental Protection, Vol. 47, pp. 30-39. DOI:10.24425/aep.2021.139500
  24. Park, J.H., Zhao, X. & Voice, T.C. (2001). Biodegradation of non-desorbable naphthalene in soils. Environmental Science and Technology, Vol. 35, pp. 2734-2740. DOI:10.1021/ES0019326
  25. Ping, L., Zhang, C., Zhu, Y., Wu, M., Hu, X., Li, Z. & Zhao, H. (2011). Biodegrading of pyrene by a newly isolated Pseudomonas putida PL2. Biotechnology and Bioprocess Engineering, Vol. 16, No. 5, pp. 1000–1008. DOI:10.1007/S12257-010-0435-Y
  26. Rosa, M.J., Jung, K.H., Perzanowski, M.S., Kelvin, E.A., Darling, K.W., Camann, D.E. & Chillrud, S.N. (2011). Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respiratory Medicine, Vol. 105, pp. 869-876. DOI:10.1016/j.rmed.2010.11.022
  27. Rota, M., Bosetti, C., Boccia, S., Boffetta, P. & La Vecchia, C. (2014). Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Archives of Toxicology, Vol. 88, pp. 1479-1490. DOI: 10.1007/s00204-014-1296-5
  28. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil. Archives of Environmental Protection, Vol. 43, pp. 73-79. DOI:10.1515/aep-2017-0004
  29. Xu, X.H., Cook, R.L., Ilacqua, V.A., Kan, H.D., Talbott, E.O. & Kearney, G. (2010). Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Science of the Total Environment, Vol. 408, pp. 4943-4948. DOI:10.1016/j.scitotenv.2010.07.034
  30. Zappelini, C., Alvarez-Lopez, V., Capelli N., Guyeux, C. & Chalot, M. (2018). Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Frontiers in Microbiology, Vol. 9, pp. 1772. DOI:10.3389/fmicb.2018.01772
Przejdź do artykułu

Autorzy i Afiliacje

Samia Kout
1
Abdessemed Ala
2
ORCID: ORCID
Mohamed Seddik Oussama Belahmadi
2
Amina Hassaine
1
Ouahiba Bordjiba
1
Ali Tahar
1

  1. Université Badji Mokhtar-Annaba Faculté des Sciences Département de Biologie, Algeria
  2. Biotechnology Research Centre (C.R.Bt), Algeria
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Since the implementation of the compulsory sorting of domestic waste policy in China, the participation rate of residents is low, which leads to the unsatisfactory result of terminal reduction of domestic waste. Therefore, the problem of domestic waste reduction still needs to rely on source reduction. Based on the panel data of 29 provincial capitals in China from 2009 to 2018, this study conducts a comprehensive threshold effect test on per capita GDP and other influencing factors of domestic waste production, conducts panel threshold regression for the factors with threshold value, and explores the nonlinear relationship between per capita GDP and domestic waste production under the influence of different threshold variables. The results show that when the urban population density is less than 272 people/km2, the increase of 1% of per capita GDP will lead to a decrease of 0.251% in the domestic waste production, otherwise, it will lead to an increase of 0.249%; when the per capita consumption expenditure is less than the threshold value of 10,260 yuan/year, the influence coefficient of per capita GDP is 0.155, which increases to 0.207 above the threshold. When the share of tertiary industry is taken as the threshold variable, the two threshold values are 61% and 71% respectively. Through the analysis of control variables, it has been found that population size and amount of courier per capita have significant positive effects on domestic waste production, while gas permeability and the number of non-governmental organizations have significant negative effects
Przejdź do artykułu

Bibliografia

  1. Bollen, K.A., Brand, J.E.(2010). A General Panel Model with Random and Fixed Effects: A Structural Equations Approach, Social Forces, 89,1,pp.1-34. DOI:10.1353/sof.2010.0072.
  2. Chen, Q.(2014). Advanced econometrics and Stata applications (Second Edition), Higher Education Press, Beijing 2014. (in Chinese)
  3. Cheng, J.H., Shi, F.Y., Yi, J.H. & Fu, H. (2020). Analysis of the factors that affect the production of municipal solid waste in China, Journal of cleaner production, 259, pp.120808-120808. DOI:10.1016/j.jclepro.2020.120808.
  4. Cui, T.N. & Wang, L.N. (2018). Regional difference analysis on the relationship between urban domestic waste emission and economic growth, Statistics and decision, 34, 20, pp.126-129. DOI:10.13546/j.cnki.tjyjc.2018.20.030. (in Chinese)
  5. Drew, J., Kortt, M. A. & Dollery, B. (2013). Did the big stick work? An empirical assessment of scale economies and the Queensland forced amalgamation program, Local government studies, 42, 1, pp.1-14, DOI:10.1080/03003930.2013.874341.
  6. Du, C.L. & Huang, T.Z. (2019). From government’s dominance to multi-governance: governance dilemma and innovation path of urban solid waste classification. Administrative tribune, 26b, 4, pp.116-121. DOI:10.16637/j.cnki.23-1360/d.2019.04.016. (in Chinese)
  7. Du, M., Shao, Y.S. & An, S. (2019). Domestic waste and economic growth in Beijing—an empirical study based on panel data. Finance theory and teaching, 6, pp.88-93. DOI:10.13298/j.cnki.ftat.2019.06.018. (in Chinese)
  8. Han, Z., Liu, Y., Zhong, M., Shi, G., Li, Q., Zeng, D. & Zhang, Y. (2018). Influencing factors of domestic waste characteristics in rural areas of developing countries. Waste management, 72, pp.45-54. DOI:10.1016/j.wasman.2017.11.039.
  9. He, Y.Q. & Wang, S.S. (2018). Factor flow and industrial structure upgrading: an analysis of the threshold effect of financial agglomeration. Financial and economics, 8, pp.62-67. DOI:10.19622/j.cnki.cn36-1005/f.2018.08.010. (in Chinese)
  10. Hoyos, R.E.D. & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. The Stata Journal, 6, 4, pp. 482–496. DOI:10.1177/1536867X0600600403.
  11. Huangfu, H.H. & Li, H.Y. (2018). Analysis on influencing factors of municipal solid waste production. Science-technology and management, 20, 4, pp.44-49. DOI:10.16315/j.stm.2018.04.004. (in Chinese)
  12. Jia, D.X. & Huang, J. (2015). Threshold effect, economic growth and carbon emission. Soft science, 29, 4, pp.67-70. DOI:10.13956/j.ss.1001-8409.2015.04.15. (in Chinese)
  13. Jiang, K. (2019). Urban livelihood and green development – hazards and prevention of landfill leachate. Journal of green science and technology, 10, pp.133-134. DOI:10.16663/j.cnki.lskj.2019.10.051. (in Chinese)
  14. Liu S.S. & Dai S.L. (2022). Why is it so difficult to implement the policy of household garbage classification in urban communities? Policy implementation process model analysis. Resources and Environment in Arid Areas, 36, 5, pp.1-7. DOI:10.13448/j.cnki.jalre.2022.112. (in Chinese)
  15. Madden, B., Florin, N., Mohr, S. & Giurco, D. (2019). Using the waste Kuznet's curve to explore regional variation in the decoupling of waste generation and socioeconomic indicators. Resources, Conservation & Recycling, 149, C, pp.674-686. DOI:10.1016/j.resconrec.2019.06.025
  16. Mao, K.Z., Sun, J.J. & Song, C.J. (2018). Has the consumption growth of urban residents exacerbated the domestic pollution. East China economic management, 32, 4, pp.87-95. DOI:10.19629/j.cnki.34-1014/f.170831014. (in Chinese)
  17. Nicolli, F. & Lafolla, V. (2012). Waste dynamics, country heterogeneity and European environmental policy effectiveness. Journal of environmental policy and planning, 14, 4, pp.371-393. DOI:10.1080/1523908X.2012.719694.
  18. Pang, L., Ni, G.C. & Yan, G.X. (2004). Hazards of Municipal Solid Waste and Countermeasures for Comprehensive Prevention and Control of Pollution. Environmental Science Dynamics, 2, pp.15-16. DOI:10.19758/j.cnki.issn1673-288x.2004.02.007. (in Chinese)
  19. Qin, B.T. & Ge, L.M. (2019). The transfer of highly polluting Industries and overall Environmental pollution in China-an empirical study based on the threshold Model of Interregional relative Environmental Regulation. China Environmental Science, 39, 8, pp.3572-3584. DOI:10.19674/j.cnki.issn1000-6923.20190604.001. (in Chinese)
  20. Ren, X. (2018). Analysis on the threshold effect of economic growth on haze pollution in the Yangtze River Economic Belt. Statistics and decision, 34, 20, pp.138-141. DOI:10.13546/j.cnki.tjyjc.2018.20.033. (in Chinese)
  21. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44, 4, pp.96-110. DOI:10.24425/aep.2018.122306.
  22. Song, G.J. & Dai X.L. (2020). Policy Framework Design of Urban Domestic Waste Management Based on Source Classification and Resource Recovery. Journal of Xinjiang Normal University (Philosophy and Social Sciences Edition), 41, 4, pp.109-125+2. DOI:10.14100/j.cnki.65-1039/g4.20200123.001. (in Chinese)
  23. Wang, C., Li, Q. & Li, L. X. (2020a). Influencing factors and future trend prediction of municipal solid waste—Based on inter provincial zoning. Journal of Beijing Institute of Technology (social sciences edition), 22, 1, pp.49-56. DOI:10.15918/j.jbitss1009-3370.2020.1491. (in Chinese)
  24. Wang, D.D., Jian, L.R. & Fu, S.S. (2020b). Study on incentive and supervision mechanism of classified recycling of urban solid waste. China environmental science, 40, 7, pp.3188-3195. DOI:10.19674/j.cnki.issn1000-6923.2020.0357. (in Chinese)
  25. Wang, X.F., Ma Z.H., Mu Z.M.et al. (2010). Study on multi-factor prediction model of municipal solid waste output based on BP neural network. Anhui Agricultural Sciences, 38, 10, pp.5475-5477. DOI:10.13989/j.cnki.0517-6611.2010.10.167. (in Chinese)
  26. Xu, B., Zhao, Y., Ju, M.T. et al. (2019). Regional difference of municipal solid waste generation in China Based on the STIRPAT model. China environmental science, 39, 11, pp.4901-4909. DOI:10.19674/j.cnki.issn1000-6923.2019.0571. (in Chinese).
  27. Xu, L.L., Yan, Z. & Cui, S.H. (2013). Path analysis of influencing factors on municipal solid waste generation: A case study of Xiamen City. China environmental science, 33, 4, pp.1180-1185. DOI:10.13671/j.hjkxxb.2013.04.021. (in Chinese)
  28. Yang, K., Kwan, H.Y., Yu, Z. & Tong, T. (2020). Model selection between the fixed-effects model and the random-effects model in meta-analysis. Statistics and its Interface, 13,4,pp.501-510. DOI: 10.4310/SII.2020.v13.n4.a7.
  29. Yang, X.F., Wang, M.F. & Hu, Q. (2019). Garbage classification: action dilemma, governance logic and policy path. Governance Research, 35, 6, pp.108-114. DOI:10.15944/j.cnki.33-1010/d.2019.06.012. (in Chinese)
  30. Zhao, Y., Ge, X.Q. & Li, X.F. (2016). Analysis on influencing factors of municipal solid waste production. Statistics and decision, 23, pp.91-94. DOI:10.13546/j.cnki.tjyjc.2016.23.023. (in Chinese)
Przejdź do artykułu

Autorzy i Afiliacje

Li Yang
1
ORCID: ORCID
Hong-Yan Wang
1
Lan Yi
2
Xiang-Zhen Shi
1
Wei Deng
1

  1. International Business School, Shaanxi Normal University, China
  2. Jinhe Center for Economic Research, Xi’an Jiaotong University, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Biochar has been extensively studied as a soil amendment to reduce nutrients losses. However, the comparative effectiveness of biochar adsorption capacity for ammonium (NH4-N), nitrate (NO3-N), and phosphate (PO4-P) remains unknown. In the present study, the effects of feedstock (banana stem and coconut shell) and temperature (300, 500, and 700°C) on biochar adsorption ability for NH 4-N, NO 3-N, and PO 4-P were investigated and fitted by three adsorption models, viz Freundlich, Langmuir, and linear. Freundlich (R 2 = 0.95–0.99) and Langmuir (R 2 = 0.91–0.95) models were found suitable for adsorption of NH 4-N. The maximum adsorption capacity (Q m) for coconut shell biochar increased with pyrolysis temperature (Q m = 12.8–15.5 mg g-1) and decreased for banana stem biochar (Q m = 12.9–9.7 mg g-1). In the case of NO 3-N adsorption, Freundlich (R 2 = 0.82–0.99) and linear model (R 2 = 1.00) were found suitable while Langmuir model showed much less contribution, similarly adsorption of PO 4-P, was not supported by these three models. The minimum concentrations required for adsorption of phosphate were recorded as 36, 8, and 3 mg L -1 using pyrolyzed biochar at the temperatures of 300, 500, and 700°C, respectively. These results indicate that the feedstock and pyrolysis temperature, as well as aquatic nutrient concentration, were important factors for the adsorption of inorganic nitrogen and phosphorus.
Przejdź do artykułu

Bibliografia

  1. Aghoghovwia, M.P., Hardie, A.G. & Rozanov, A.B. (2020). Characterisation, adsorption and desorption of ammonium and nitrate of biochar derived from different feedstocks. Environmental Technology, 43, pp. 774-787. DOI:10.1080/09593330.2020.1804466
  2. Bao, S.D. (2000). Soil agricultural chemical analysis (3rd Edition), China Agricultural Press, Beijing 2000.
  3. Carpenter, S.R. (2008). Phosphorus control is critical to mitigating eutrophication. PANS, 105, pp. 11039-11040. DOI:10.1073/pnas.0806112105
  4. Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S. & Gulbrandson, D.W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, pp. 250-257. DOI:10.1016/j.micromeso.2013.05.023
  5. Fidel, R.B., Laird, D.A. & Spokas, K.A. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 8, pp. 1-10. DOI:10.1038/s41598-018-35534-w
  6. Freundlich, H.M.F. (1907). Über die Adsorption in Lösungen. Z Phys Chem, 57, pp. 385–470.
  7. Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T. & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PloS One, 9, pp. e113888. DOI:10.1371/journal.pone.0113888
  8. Ghodszad, L., Reyhanitabar, A., Maghsoodi, M.R., Lajayer, B.A. & Chang, S.X. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, pp. 131176. DOI:10.1016/j.chemosphere.2021.131176
  9. Hale, S.E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D. & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91, pp. 1612-1619. DOI:10.1016/j.chemosphere.2012.12.057
  10. Hu, X., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Y. & Ma, C. (2020). Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of the Total Environment, 707, pp. 135544. DOI:10.1016/j.scitotenv.2019.135544
  11. Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. (2014). Fertilizer nitrogen uptake by rice increased by biochar application. Biology and Fertility of Soils, 50, pp. 997-1000. DOI:10.1007/s00374-014-0908-9
  12. Hollister, C.C., Bisogni, J.J. & Lehmann, J. (2013). Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). Journal of Environmental Quality, 42, pp. 137-144. DOI:10.2134/jeq2012.0033
  13. Hou, J., Huang, L., Yang, Z., Zhao, Y., Deng, C., Chen, Y. & Li, X. (2016). Adsorption of ammonium on biochar prepared from giant reed. Environmental Science and Pollution Research, 23, pp. 19107-19115. DOI:10.1007/s11356-016-7084-4
  14. Jassal, R.S., Johnson, M.S., Molodovskaya, M., Black, T.A., Jollymore, A. & Sveinson, K. (2015). Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Journal of Environmental Management, 152, pp. 140-144. DOI:10.1016/j.jenvman.2015.01.021
  15. Kameyama, K., Miyamoto, T., Iwata, Y. & Shiono, T. (2016). Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Science and Plant Nutrition, 62, pp. 180-184. DOI:10.1080/00380768.2015.1136553
  16. Kim, J., Yoo, G., Kim, D., Ding, W. & Kang, H. (2017). Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Applied Soil Ecology, 117, pp. 57-62. DOI:10.1016/j.apsoil.2017.05.006
  17. Kong, L. L., Liu, W. T. & Zhou, Q. X. (2014). Biochar: an effective amendment for remediating contaminated soil. Reviews of Environmental Contamination and Toxicology, 228, pp. 83-99. DOI: 10.1007/978-3-319-01619-1_4
  18. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, pp. 2221-2295. DOI:10.1021/ja02268a002
  19. Laird, D., Fleming, P., Wang, B., Horton, R. & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, pp. 436-442. DOI:10.1016/j.geoderma.2010.05.012
  20. Lu, C. & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Science Data, 9, pp. 181-192. DOI.org/10.5194/essd-9-181-2017
  21. Luo, L., Wang, G., Shi, G., Zhang, M., Zhang, J., He, J., Xiao, Y., Tian, D., Zhang, Y., Deng, S., Zhou, W., Lan, T. & Deng, O. (2019). The characterization of biochars derived from rice straw and swine manure, and their potential and risk in N and P removal from water. Journal of Environmental Management, 245, pp. 1-7. DOI:10.1016/j.jenvman.2019.05.072
  22. Norman, R. J., Edberg, J. C. & Stucki, J. W. (1985). Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal, 49, pp. 1182-1185. DOI: 10.2136/sssaj1985.03615995004900050022x
  23. Piekarski, J., Dąbrowski, T., Dąbrowski, J. & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced form sewage sludge and beekeeping waste. Archives of Environmental Protection, 47, pp. 20-28. DOI: 10.24425/aep.2021.137275
  24. Pratiwi, E.P.A., Hillary, A.K., Fukuda, T. & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma, 277, pp. 61-68. DOI:10.1016/j.geoderma.2016.05.006
  25. Pulka, J., Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel. Archives of Environmental Protection, 42, pp. 125-134. DOI:10.1515/aep-2016-0043
  26. Takaya, C.A., Fletcher, L.A., Singh, S., Anyikude, K.U. & Ross, A.B. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, pp. 518-527. DOI:10.1016/j.chemosphere.2015.11.052
  27. Tian, H., Lu, C., Melillo, J., Ren, W., Huang, Y., Xu, X., Liu, M., Zhang, C., Chen, G., Pan, S., Liu, J. & Reilly, J. (2012). Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environmental Research Letters, 7, pp. 044020. DOI:10.1088/1748-9326/7/4/044020
  28. Trazzi, P.A., Leahy, J.J., Hayes, M.H. & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4, pp. 37-46. DOI:10.1016/j.jece.2015.11.005
  29. Vijayaraghavan, K. & Balasubramanian, R. (2021). Application of pinewood waste-derived biochar for the removal of nitrate and phosphate from single and binary solutions. Chemosphere, 278, pp. 130361. DOI:10.1016/j.chemosphere.2021.130361
  30. Xu, D., Cao, J., Li, Y., Howard, A. & Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Management, 87, pp. 652-660. DOI:10.1016/j.wasman.2019.02.049
  31. Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z. & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10, pp. 1-11. DOI:10.1038/s41598-019-56954-2
  32. Yin, H., Zhao, W., Li, T., Cheng, X. & Liu, Q. (2018). Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renewable and Sustainable Energy Reviews, 81, pp. 2695-2702. DOI:10.1016/j.rser.2017.06.076
  33. Yin, Q., Zhang, B., Wang, R. & Zhao, Z. (2018). Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Environmental Science and Pollution Research, 25, pp. 4320-4329. DOI:10.1007/s11356-017-0778-4
  34. Zhang, H., Chen, C., Gray, E.M., Boyd, S.E., Yang, H. & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma, 276, pp. 1-6. DOI:10.1016/j.geoderma.2016.04.020
  35. Zhao, H., Xue, Y., Long, L. & Hu, X. (2018). Adsorption of nitrate onto biochar derived from agricultural residuals. Water Science and Technology, 77, pp. 548-554. DOI:10.2166/wst.2017.568
  36. Zhao, S., Wang, B., Gao, Q., Gao, Y. & Liu, S. (2017). Adsorption of phosphorus by different biochars. Spectroscopy Letters, 50, pp. 73-80. DOI:10.1080/00387010.2017.1287091
  37. Zhou, L., Xu, D., Li, Y., Pan, Q., Wang, J., Xue, L. & Howard, A. (2019). Phosphorus and nitrogen adsorption capacities of biochars derived from feedstocks at different pyrolysis temperatures. Water, 11, pp. 1559. DOI:10.3390/w11081559
Przejdź do artykułu

Autorzy i Afiliacje

Ganghua Zou
1
Ying Shan
1
Minjie Dai
2
Xiaoping Xin
3
Muhammad Nawaz
4
Fengliang Zhao
1

  1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, China
  2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Chin
  3. University of Florida, United States
  4. Bahauddin Zakariya University, Pakistan
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Polymer mixed-matrix nanocomposite membranes were prepared by a wet-phase inversion method and used in ultrafiltration processes to treat wastewater treatment plant effluent spiked with organic micropollutants. The effects of halloysite (Hal), TiO2, and functionalized single-walled carbon nanotube (SWCNT-COOH) nanofillers on the treatment efficiency, permeability loss, and fouling behavior of polyethersulfone (PES) membranes were investigated and compared with those of a pristine PES membrane. The nanocomposite membranes exhibited lower porosity and stronger negative surface charge because of the added hydrophilic nanofillers. The PES-Hal membrane achieved the optimal balance of permeability and micropollutant removal owing to enhanced pollutant adsorption on the membrane surface and the creation of an easily removable cake layer (i.e., reversible fouling). The PES-SWCNT-COOH membrane demonstrated the highest treatment efficiency, but also the high permeability loss. In contrast, PES-TiO2 exhibited excellent antifouling properties, but poorer treatment capabilities.
Przejdź do artykułu

Bibliografia

  1. Adeniyi, A., Mbaya, R., Popoola, P., Gomotsegang, F., Ibrahim, I. & Onyango, M. (2020). Predicting the fouling tendency of thin film composite membranes using fractal analysis and membrane autopsy, Alexandria Engineering Journal, 59, 6, pp. 4397-4407. DOI:10.1016/j.aej.2020.07.046
  2. Arif, Z., Sethy, N.K., Mishra, P.K. & Verma, B. (2019). Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment, Iranian Polymer Journal, 19, 28, pp. 301-312. DOI:10.1007/s13726-019-00700-y
  3. Bassyouni, M., Abdel-Aziz, M.H., Zoromba, M.Sh., Abdel-Hamid, S.M.S. & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification, Journal of Industrial and Engineering Chemistry, 73, pp. 19-46. DOI:10.1016/j.jiec.2019.01.045
  4. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review, Archives of Environmental Protection, 47, 3, pp. 3-27, DOI:10.24425/aep.2021.138460
  5. Bohdziewicz, J., Dudziak, M., Kamińska, G. & Kudlek, E. (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment - analytical problems, Desalination and Water Treatment, 57, pp. 1361-1369. DOI:10.1080/19443994.2015.1017325
  6. Bu, F., Gao, B., Yue, Q., Liu, C., Wang, W. & Shen, X. (2019). The Combination of Coagulation and Adsorption for Controlling Ultrafiltration Membrane Fouling in Water Treatment, Water, 11, pp. 1-13. DOI:10.3390/w11010090
  7. Buruga, K., Song, H., Shan, J., Bolan, N., Thimmarajampet Kalathi, J. & Kim, K-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water, Journal of Hazardous. Materials, 379, pp. 1-27. DOI:10.1016/j.jhazmat.2019.04.067
  8. Dudziak, M. & Burdzik-Niemiec, E. (2017). Ultrafiltration through modified membranes in wastewater treatment containing 17β-estradiol and bisphenol A, Przemysł Chemiczny, 96, pp. 448-452, DOI: 10.15199/62.2017.2.35 (in Polish).
  9. Esfahani, M.R., Aktij, S.A., Dabaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J.; Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A. & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications, Separation and Purification Technolology, 213, pp. 465-499. DOI:10.1016/j.seppur.2018.12.050
  10. Farjami, M., Vatanpour, V. & Moghadassi, A. (2020). Effect of nanoboehmite/poly(ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation, Chemical Engineering Research and Design, 156, pp. 371-383. DOI:10.1016/j.cherd.2020.02.009
  11. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, 2, pp. 34-41. DOI:10.24425/aep.2022.140764
  12. Ghaemi, N., Madaeni, S.S., Alizadeh, A., Rajabi, H. & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides, Journal of Membrane Science, 382, pp. 135-147. DOI:10.1016/j.memsci.2011.08.004
  13. Haas, R., Opitz, R. & Grischek, T. (2019). The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment, Water, 11, pp. 1-14. DOI:10.3390/w11010018.
  14. Hao, S., Jia, Z., Wen, J., Li, S., Peng, W., Huang, R. & Xu, X. (2021). Progress in adsorptive membranes for separation – A review, Separation and Purification Technology, 255, 117772. DOI:10.1016/j.seppur.2020.117772.
  15. Inurria, A., Cay-Durgun, P., Rice, D., Zhang, H., Seo, D.-K., Lind, M.L. & Perreault, F. (2019). Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity, Desalination, 451, pp. 139-147. DOI:10.1016/j.desal.2018.07.004.
  16. Kamińska, G. (2022). Modification of ultrafiltration membranes with nanoparticles and their application, Wydawnictwo Politechniki Śląskiej, Gliwice 2022. (in Polish)
  17. Kamińska, G. & Bohdziewicz, J. (2018). Separation of selected organic micropollutants on ultrafiltration membrane modified with carbon nanotubes.Ochrona. Środowiska, 40, 4, pp. 37-42. (in Polish)
  18. Kamińska, G., Bohdziewicz, J., Calvo, J.I., Prádanos, P., Palacio, L. & Hernández, A. (2015). Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance, Journal of Membrane Science, 493, pp. 66-79. DOI:10.1016/j.memsci.2015.05.047
  19. Kamińska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis, Desalination and Water Treatment, 57, pp. 1344-1353. DOI:10.1080/19443994.2014.1002277
  20. Kamińska, G., Pronk, W. & Traber, J. (2020). Effect of coagulant dose and backflush pressure on NOM membrane fouling in inline coagulation-ultrafiltration, Desalination and Water Treatment, 199, pp. 188-197. DOI:10.5004/dwt.2020.25657.
  21. Leo, C.P.; Chai, W.K.; Mohammad, A.W., Qi, Y., Hoedley, A.F.A. & Chai, S.P. (2011). Phosphorus removal using nanofiltration membranes, Water Science and Technology 64, pp.199-205. DOI:10.2166/wst.2011.598.
  22. Mao, Y., Huang, Q. Meng, B., Zhou, K., Liu, G., Gigliuzza, A., Drioli, E. & Jin, W. (2020). Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation, Journal of Membrane Science, 611, 118364. DOI:10.1016/j.memsci.2020.118364.
  23. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82. DOI:10.24425/aep.2022.140546.
  24. Maximous, N., Nakhla, G., Wan, W. & Wong, K. (2009). Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, 341, pp. 67–75. DOI:10.1016/j.memsci.2009.05.040.
  25. Mozia, S.; Grylewicz, A.; Zgrzebnicki, M.; Darowna, D. & Czyżewski, A. (2019). Investigations on the properties and performance of mixed matrix polyethersulfone membranes modified with halloysite nanotubes, Polymers-Basel. 11, 671, pp. 1-18. DOI:10.3390/polym11040671.
  26. Muthumareeswaran, M.R. & Agarwal, G.P. (2014). Feed concentration and pH effect on arsenate and phosphate rejection via polyacrylonitrile ultrafiltration membrane, Journal of Membrane Science, 468, pp. 11-19. DOI:10.1016/j.memsci.2014.05.040.
  27. Nasir, A., Masood, F., Yasin, T. & Hammed, A. (2019). Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications, Journal of Industrial and Engineering Chemistry, 79, pp. 29-40. DOI:10.1016/j.jiec.2019.06.052.
  28. Nguyen, M.N., Trinh, P.B., Butkhardt, C.J. & Schafer, A.I. (2021). Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants, Separation and Purification Technology, 264, 118405. DOI:10.1016/j.seppur.2021.118405.
  29. Niedergall, K., Bach, M., Hirth, T., Tovar, G.E.M. & Schiestel, T. (2014). Removal of micropollutants from water by nanocomposite membrane adsorbers, Separation and Purification Technology, 131, 27, pp. 60-68. DOI:10.1016/j.seppur.2014.04.032.
  30. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W. & Wolska, L. (2020). Micropollutants in treated wastewater, Ambio, 49(2), pp. 487-503. DOI:10.1007/s13280-019-01219-5
  31. Saki, H., Alemayehu, E., Schomburg, J. & Lennartz, B. (2019). Halloysite nanotubes as adsorptive material for phosphate removal from aqueous solution, Water 11, 2, 203. DOI:10.3390/w11020203.
  32. Shaban, M., AbdAllah, H., Said, L. & Ahmed, A.M. (2019). Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes, Journal of Polymer Research, 26, 181, pp. 1-12. DOI:10.1007/s10965-019-1831-4.
  33. Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H. & Lee, S-M. (2019). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environmental Technology & Innovation, 17, 100529. DOI:10.1016/j.eti.2019.100529.
  34. Suhalim, N.S., Kasim, N., Mahmoudi, E., Shamsudin, I.J., Mohammad, A.W., Zuki, F.M. & Jamari, N. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview, Nanomaterials, 12, 437. DOI:10.3390/nano12030437.
  35. Vatanpour, V., Mansourpanah, Y., Soroush Mousavi Khadem, S., Zinadini, S., Dizge, N., Reza Ganjali, M., Mirsadeghi, S., Rezapour, M., Reza Saeb, M. & Karimi-Male, H. (2021). Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller, Polymer Testing, 94, pp. 107040. DOI:10.1016/j.polymertesting.2020.107040.
  36. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. & Derakhshan, A.A. (2012). Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, Journal of Membrane Science, 401-402, pp. 132-143. DOI:10.1016/j.memsci.2012.01.040.
  37. Wang, S., Yao, S., Du, K., Yuan, R., Chen, H., Wang, F. & Zhou, B. (2021). The mechanisms of conventional pollutants adsorption by modified granular steel slag, Environmental Engineering Research, 26, 1, 190352. DOI:10.4491/eer.2019.352.
  38. Zhang, J., Nguyen, M.N., Li, Y., Yang, C. & Schafer, A.I. (2020). Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes, Journal of Hazardous Materials, 391, 122020. DOI:10.1016/j.jhazmat.2020.122020.
  39. Zhang, X., Wang, D.K., Lopez, D.R.S. & Diniz da Costa, J. (2014). Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal, 236, pp. 314-322. DOI:10.1016/j.cej.2013.09.059.
Przejdź do artykułu

Autorzy i Afiliacje

Gabriela Kamińska
1
ORCID: ORCID

  1. Institute of Water and Wastewater Engineering, Gliwice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The present study is focused on the evaluation of bioeffects of silver nanoparticles (AgNPs) synthesized by Bacillus subtilis strain I’-1a, the producer of iturin A lipopeptide biosurfactant. The following properties of biologically synthesized silver nanoparticles (bio-AgNPs) were evaluated: in vitro cytotoxicity, antioxidant properties, and metabolic activities of mammalian cells. As a control, chemically synthesized silver nanoparticles (chem-AgNPs) were used. In vitro, antioxidant activity of bio-AgNPs showed a significant effect on the scavenging of free radicals. Bio-AgNPs can be potent natural antioxidants and can be essential for health preservation against oxidative stress-related degenerative diseases, such as cancer. The cell viability of human skin fibroblasts NHDF was remarkably inhibited in the presence of both AgNPs. However, bio-AgNPs were more active than chem-AgNPs. In our experiment, microarrays PM-M1–PM-M4 were used to evaluate the growth of NHDF fibroblast cells in the presence of bio-AgNPs and chem-AgNPs. The NHDF fibroblast cells were more active in the presence of bio-AgNPs than in chem-AgNPs. Probably, the presence of biosurfactant produced by Bacillus subtilis I’-1a significantly increased the stability of biogenic AgNPs and enhanced their biological activities and specific interaction with human DNA. Furthermore, the evaluated biological activities were enhanced for the biosurfactant-based AgNPs.
Przejdź do artykułu

Bibliografia

  1. Ahn, E-Y., Jin, H. & Park, Y. (2019). Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Arch. Pharm. Res. 7, 345. DOI:10.1007/s12272-019-01152-x.
  2. Bernat, P., Paraszkiewicz, K., Siewiera, P., Moryl, M., Płaza, G. & Chojniak J. (2016). Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World J. Microbiol. Biotechnol. 32, 157. DOI:10.1007/s11274-016-2126-0.
  3. Bochner, B.R., Siri, M., Huang, R.H., Noble, S., Lei, X.-H., Clemons, P.A. & Wagner, B.K. (2011). Assay of the multiple energy-producing pathways of mammalian cells. PLoS ONE 6:e18147. DOI:10.137/journal.pone.0018147.
  4. Bodzek, M., Konieczny, K., Kwiecińska-Mydlak, A. (2021) New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review. Archives of Environmental Protection: (47) 3 pp. 3-27. DOI:10.24425/aep.2021.138460
  5. Chojniak, J., Libera, M., Król, E. & Płaza, G. (2018). A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology 27, 352–359. DOI:10.1007/s10646-018-1899-3.
  6. Durval, I.J.B., Meira, H.M., de Veras, B.O., Rufino, R.D., Converti, A. & Sarubbo, L.A.(2021). Green synthesis of silver nanoparticles using a biosurfactant from Bacillus cereus UCP 1615 as stabilizing agent and its application as an antifungal agent. Fermentation 7, 233. DOI:10.3390/fermentation7040233.
  7. Giri, A.K., Jena, B., Biswal, B., Pradhan, A. K., Arakha, M., Acharya, S. & Acharya L. (2022). Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against bioflm producing bacteria. Scientifc Reports, 12, 8383. DOI:10.1038/s41598-022-12484-y.
  8. George, D. & Mallery, P. (2010). SPSS for Windows Step by Step: A Simple Guide and Reference 17.0 Update.10th Edition, Pearson, Boston.
  9. Grzegorzek, M. (2021) Nanofiltration usage for fluoride removal in the sodium chloride presence. Archives of Environmental Protection, (47) 4 pp. 98-108. DOI:10.24425/aep.2021.139506
  10. Li, K., Du, S., Van Ginkel, S. & Chen Y. (2014). Atomic force microscopy study of the interaction of DNA and nanoparticles. Adv. Exp. Med. Biol. 811, 93-109. DOI:10.1007/978-94-017-8739-0_6.
  11. Jadoun, S., Arif, R., Jangid, N.K. & Meena, R.K (2022). Green synthesis of nanoparticles using plant extracts: a review. Environm. Chemistry Letters 19, 355–374. DOI:10.1007/s10311-020-01074-x.
  12. Jimoh, A.A. & Lin, J. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Safety 184, 109607. DOI:10.1016/j.ecoenv.2019.109607.
  13. Keat, C. L., Aziz, A., Eid, A. & Elmarzugi N. A. ( 2015). Biosynthesis of nanoparticles and silver nanoparticles. Biores. Bioprocess 2, 47-61. DOI:10.1186/s40643-015-0076-2.
  14. Keshari, A.K., Srivastava, R., Singh, P., Yadav, V.B. & Nath G. (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integrat. Med. 11, 37e4. DOI:10.1016/j.jaim.2017.11.003.
  15. Liao, C., Li, Y. & Tjong, S.C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20, 449. DOI:10.3390/ijms20020449.
  16. Mendrek, B., Chojniak, J., Libera, M., Trzebicka, B., Bernat, P., Paraszkiewicz, K. & Płaza G. (2016). Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as stabilizing agent. J. Disp. Sci. Technol. 38, 1647–1655. DOI:10.1080/01932691.2016.1272056.
  17. Mensor, L.L., Menez, F.S., Leitão, G.G., Reis, A.S., Dos-Santos, T.C., Coube, C.S. & Leitao, S.G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytoteraphy Res. 15, 127-130. DOI:10.1002/ptr.687.
  18. Pal, G., Rai, P. & Pandey A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologie. Shukla A.K. & Iravani S. (eds) Elsevier, pp. 1-26.
  19. Pauly, R., Cascio, L., Srikanth, S., Jones, K., Sorrow, S., Cubillan, R., Chen, C.-F., Skinner, C.D., Champaigne, K., Stevenson, R.E., Schwartz, C.E. & Boccuto L.(2021). Development of a cell-based metabolic test for the identification of individuals with autism spectrum disorder. Res. Autism Spect. Disorders 85, 101790. DOI:10.1016/j.rasd.2021.101790.
  20. Płaza, G.A., Pacwa-Płociniczak, M., Piotrowska-Seget, Z,. Brigmon, R. & Król, E. (2015). Characterization of Bacillus strains producing biosurfactants. [In:] Thangavel, P. & Sridevi, G. (eds). Environmental sustainability. Role of green technologies. Springer Science +Business Media: 173–183. DOI:10.1007/978-81-322- 2056-5_10.
  21. Płaza, G.A., Chojniak, J., Mendrek, B., Trzebicka, B., Kvitek, L., Panacek, A., Prucek, R., Zboril, R., Paraszkiewicz, K. & Bernat, P. (2016). Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant. IET Nanobiotechnol. 10, 62–68. DOI:10.1049/iet-nbt.2015.0016.
  22. Priya, R.S., Geetha, D. & Ramesh, P.S. (2015). Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol. Environ. Safety 4, 234-252. DOI:10.1016/j.ecoenv.2015.07.037.
  23. Rai, M., Ingle, A.P., Trzcińska-Wencel, J., Wypij, M., Bonde, S., Yadav, A., Kratošová, G. & Golińska, P. (2021). Biogenic silver nanoparticles: What we know and what do we need to know? Nanomaterials 11, 2901. DOI:10.3390/nano11112901.
  24. Reddy, A.S., Chen, C.-Y., Baker, S.C., Chen, C.-C., Jean, J.-S., Fan, C.-W., Chen, H.-R., & Wang, J.-C. (2009). Synthesis of silver nanoparticles using surfactin: A biosurfactant as stabilizing agent. Mater. Lett. 63, 1227–1230. DOI:10.1016/j.matlet.2009.02.028.
  25. Santhosh, P.B., Genova, J. & Chamati, H.(2022). Green synthesis of gold nanoparticles: An eco-friendly approach. Chemistry, 4, 345–369. DOI:10.3390/ chemistry4020026.
  26. Selvakesavan, R.K. & Franklin, G. (2021). Prospective application of nanoparticles green synthesized using medicinal plant extracts as novel nanomedicines. Nanotechnol. Sc. Appl. 14, 179–195. DOI:10.2147/NSA.S5333467.
  27. Shahzadi, I., Aziz Shah, S.M., Shah, M.M., Ismail, T., Fatima, N., Siddique, M., Waheed, U., Baig, A. & Ayaz, A. (2022). Antioxidant, cytotoxic, and antimicrobial potential of silver nanoparticles synthesized using Tradescantia pallida extract. Front. Bioeng. Biotechnol. 10, 907551. DOI:10.3389/fbioe.2022.907551.
  28. Shreyash, N., Bajpai, S., Khan, M. A., Vijay, Y., Tiwary, S. K. & Sonker. M. (2021). Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl. Nano Mater. 4, 11428–11457. DOI:10.1021/acsanm.1c02946.
  29. Tariq, H., Rafi, M., Amirzada, M. I., Muhammad, S. A., Yameen, M. A., Mannan, A., et al. (2022). Photodynamic cytotoxic and antibacterial evaluation of Tecoma stans and Narcissus tazetta mediated silver nanoparticles. Arabian J. Chem. 15, 103652. DOI:10.1016/j.arabjc.2021.103652.
  30. Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F. & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environm. Technol. Innovat. 26, 102336. DOI:10.1016/j.eti.2022.102336.
  31. Yugal, K. Mohanta, Y.K.M., Panda, S.K., Jayabalan, R., Sharma, N., Bastia, A.K. & Mohanta, T.K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 4, 14. DOI:10.3389/fmolb.2017.00014.
  32. Zhang, D., Ma, X.-L., Gu, Y., Huang, H. & Zhang.,G.-W. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat Cancer. Front. Chem. 8, 799. DOI:10.3389/fchem.2020.00799.
Przejdź do artykułu

Autorzy i Afiliacje

Joanna Małgorzata Chojniak-Gronek
1 2
ORCID: ORCID
Łukasz Jałowiecki
1
Grażyna Anna Płaza
1

  1. Institute for Ecology of Industrial Areas, Poland
  2. Łukasiewicz – Industrial Chemistry Institute, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Phosphogypsum (PG) – a waste material generated in enormous amounts, accumulates a wide range of pollutants and thus represents a major environmental problem. Among the proposed potential strategies for PG management, none has been implemented on a large scale up to date. At the same time, the rapid depletion of phosphorite resources, used to manufacture most commercial phosphorus (P) fertilizers, poses unprecedented challenges for future agriculture and environmental protection. The aim of this study was to assess the possibility of using PG as a source of P for fertilizing plants. The effect of PG fertilization on the dry mass accumulation, P and sulphur (S) contents in soil and in the above-ground parts of plants, as well as on the level of heavy metal contaminations, were studied in the experimental model consisted of 12 genotypes of three lupine species – Lupinus angustifolius, Lupinus albus and Lupinus luteus. The PG application increased the content of both the available and active P in the soil. The increased P bioavailability resulted in an elevated uptake and intracellular content of this nutrient in the studied plant species in a dose- and variety-dependent manner. The heavy metals present in the waste did not affect their accumulation in the plants. The results indicate the possibility of using P forms present in PG as an alternative source of this component in plant nutrition, at the same time allowing elimination of the waste deposited on huge areas, which will certainly contribute to improving the quality of the environment.
Przejdź do artykułu

Bibliografia

  1. Abdolzadeh, A., Wang, X., Veneklaas, E.J & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany, 105, pp. 365–374. DOI:10.1093/aob/mcp297
  2. Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Parissi, Z., Polidoros, A., Tani, E. & Vlachostergios D. (2019). The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci., 20, 851, pp. 1-27. DOI:10.3390/ijms20040851
  3. Al- Karaki, G.N. & Al-Omoush, M. (2002). Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. J. Plant Nutr, 25(4), pp. 873–883. DOI:10.1081/PLN-120002966
  4. Al-Hwaiti M. & Al-Khashman O. (2015). Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environ Geochem Health, 37, pp. 287–304. DOI:10.1007/s10653-014-9646-z
  5. Ammar, R., El Samrani, A.G., Kazpard, V., Bassil, J., Lartiges, B., Saad, Z. & Chou L. (2013) Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment. Environ Sci Pollut Res, 20, pp. 9014–9025. DOI:10.1007/s11356-013-1875-7.
  6. Aslam, M.M., Karanja, J.K., Yuan, W., Zhang, Q., Zhang, J. & Xu, W. (2021). Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiology and Biochemistry, 166, pp. 531–539. DOI:10.1016/j.plaphy.2021.06.022
  7. Bielecki, K. & Kulczycki G. (2012). Modyfikacja metody Buttersa i Chenery'ego oznaczania siarki ogólnej w roślinach i glebie, Przem. Chem., 91/5, pp. 688-691. (in Polish)
  8. Blum, S.C., Caires, E.F. & Alleoni, L.R.F. (2013). Lime and phosphogypsum application and sulfate retention in subtropical soils under no-till system, J. Soil Sci. Plant Nutr., 13(2), pp. 279-300. DOI:10.4067/S0718-95162013005000024
  9. Blum, S.C., Garbuio, F.J., Joris, H.A.W. & Caires E.F. (2014). Assessing available soil sulphur fromphosphogypsum applications in a no-till cropping system. Experimental Agriculture, 50(04), pp. 516-532. DOI:10.1017/S0014479714000015
  10. Bolland, M.D.A. (1997). Comparative phosphorus requirement of four lupin species. J Plant Nutr, 20, pp. 1239–1253. DOI:10.1080/01904169709365332
  11. Bouray, M., Moir, J., Condron, L. & Lehto N. (2020). Impacts of Phosphogypsum, Soluble Fertilizer and Lime Amendment of Acid Soils on the Bioavailability of Phosphorus and Sulphur under Lucerne (Medicago sativa). Plants, 9(7), pp. 883. DOI:10.3390/plants9070883
  12. Brennan, R.F. & Bolland, M.D.A. (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant and Soil, 248, pp. 167–185.
  13. Caires, E.F., Kusman, M.T., Barth, G., Garbuio, F.J. & Padilha, J.M. (2004). Changes in soil chemical properties and corn response to lime and gypsum applications. Revista Brasileira de Ciência do Solo, 28, pp.125–136.
  14. Campbell, C.G., Garrido, F., Illera, V. & García-González, M.T. (2006). Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, sugar foam and phosphoric rock. Applied Geochemistry, 21, pp. 1030–1043. DOI:10.1016/j.apgeochem.2006.02.023
  15. Carmeis Filho, A.C.A., Crusciol, C.A.C., Guimarães, T.M., Calonego, J.C. & Mooney, S.J. (2016). Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLOS One, 11(12), pp. 1-21. DOI:10.1371/journal.pone.0167564
  16. Chabchoubi, I.B., Bouguerra, S., Ksibi, M. & Hentati O. (2021) Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum contaminated soils. Environ Geochem Health, 43, pp. 1953–1981. DOI:10.1007/s10653-020-00777-y
  17. Chen, Y.L., Dunbabin, V.M., Diggle, A.J., Siddique, K.H.M & Rengel, Z. (2013). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64, pp. 588–599. DOI:10.1071/CP13012
  18. Cheng, L., Tang, X., Vance, C.P., White, P.J., Zhang, F. & Shen, J. (2014). Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). J Exp Bot, 65 (12), pp. 2995–3003. DOI:10.1093/jxb/eru135
  19. Chernysh, Y., Yakhnenko, O., Chubur, V. & Roubik, H. (2021). Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci., 11, 1575. DOI:10.3390/app11041575
  20. Chuan, L.M., Zheng, H.G., Zhao, J.J., Wang, A.L. & Sun, S.F. (2017). Policies, standards and managements associated with PG utilization. IOP Conf. Ser. Earth Environ. Sci., 81,pp. 1-4.
  21. Cordell, D., & White, S. (2013) Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 3, pp. 86-116. DOI:10.3390/agronomy3010086
  22. Crusciol, C.A.C., Artigiani, A.C.C.A., Arf, O., Carmeis Filho, A.C.A., Soratto, R.P., Nascente, A.S. & Alvarez, R.C.F. (2016). Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, pp. 87–99. DOI:10.1016/j.catena.2015.09.009
  23. Delgado, A., Uceda, I., Andreu, L., Kassem, S. & Del Campbillo, C. (2002) Fertilizer Phosphorus Recovery from Gypsum-Amended, Reclaimed Calcareous Marsh Soils. Reclaimed Calcareous Marsh Soils, Arid Land Research and Management, 16:4, pp. 319-334. DOI:10.1080/15324980290000421
  24. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & Raun, W. (2017) World Phosphorus Use Efficiency in Cereal Crops. Agronomy Journal, vol. 109, issue 4, pp. 1670-1677. DOI:10.2134/agronj2016.08.0483
  25. Ding, W., Cong, W. & Lambers, H. (2021). Plant phosphorus-acquisition and –use strategies affect soil carbon cycling. Trends in Ecology & Evolution, vol. 36, no. 10, pp. 899-906. DOI:10.1016/j.tree.2021.06.005
  26. Dissanayaka, D.M.S.B., Wickramasinghe, W.M.K.R., Marambe B. & Wasaki J. (2017). Phosphorus-mobilization strategy based on carboxylate exudation in lupins (lupinus, Fabaceae): a mechanism facilitating the growth and phosphorus acquisition of neighbouring plants under phosphorus-limited conditions. Experimental Agriculture, 53(2), pp. 308-319. DOI:10.1017/S0014479716000351
  27. Egle, K., Römer, W. & Keller, H. (2003). Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie, 23, pp. 511–518. DOI:10.1051/agro:2003025
  28. Ekholm, P., Jaakkola, E., Kiirikki, M., Lahti, K., Lehtoranta, J., Mäkelä, V., Näykki, T., Pietola, L., Tattari, S., Valkama, P., Vesikko, L. & Väisänen S. (2011). The effect of gypsum on phosphorus losses at the catchment scale. The Finnish Environment 33, Finnish Environment Institute, Helsinki.
  29. Elloumi, N., Zouari, M., Chaari, L., Abdallah, F.B., Woodward, S. & Kallel, M. (2015). Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res, 22, pp. 14829–14840. DOI: 10.1007/s11356-015-4716-z
  30. Elrashidi, M.A., West, L.A., Seybold, C.A., Benham, E.C., Schoeneberger, P.J. & Ferguson, R. (2010). Effects of Gypsum Addition on Solubility of Nutrients in Soil Amended With Peat. Soil Science, v. 175, n. 4, pp. 162-172. DOI:10.1097/SS.0b013e3181dd51d0
  31. Elser, J.J. & Bennett, E.M. (2011). A broken biogeochemical cycle. Nature, 478, pp. 29–31. DOI:10.1038/478029a
  32. Enamorado, S., Abril, J.M., Mas, J.L., Periáñez, R., Polvillo, O., Delgado, A. & Quintero, J.M. (2009). Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants. Water Air Soil Pollut, 203,pp. 65–77. DOI:10.1007/s11270-009-9992-0
  33. Fotyma, M., Fotyma, E., Gosek, S., Iłowiecka, E., Pietrasz-Kęsik, G., Kęsik, K., Ostrokólski, I., Szewczyk, M., Wilkos, G. & Faber, A. (1991) Szybkie metody określania potrzeb nawozowych roślin oraz zagrożenia środowiska w wyniku nawożenia, Instrukcja wdrożeniowa 34/91, Puławy. (in Polish)
  34. Funayama-Noguchi, S., Noguchi, K. & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38, pp. 399–410.
  35. Grabas, K., Pawełczyk, A., Stręk W., Szełęg, E. & Stręk S. (2018). Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste and Biomass Valorization, 10, pp. 3143–3155. DOI:10.1007/s12649-018-0316-8
  36. Gresta, F., Wink, M., Prins, U. Abberton, M., Capraro, J., Scarafoni, A. & Hill, G. (2017). Lupins in European cropping systems, in: Legumes in cropping systems, Murphy-Bokern, D., Stoddard, F., & Watson, C. (Eds.), Wallingford: CABI Publishing, pp. 88-108. DOI:10.1079/9781780644981.0088
  37. Hentati, O., Nelson, A., Caetano, A. L., Bouguerra, S., Gonçalves, F., Römbke, J. & Pereira, R. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, pp. 80–89. DOI:10.1016/j.jhazmat.2015.03.034
  38. Hilton, J. (2006). Phosphogypsum – management and opportunities for use, in: The International Fertiliser Society Cambridge, Proceedings 587, London.
  39. Kabata-Pendias, A., Pendias, H. (2001). Trace elements in soils and plants, Third edition, CRC Press LLC, 408 p.
  40. Kassir, L.N., Darwish, T., Shaban, A., Lartiges, B. & Ouiani, N. (2012). Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study. Environ Monit Assess, 184, pp. 4397–4412. DOI:10.1007/s10661-011-2272-7
  41. Lambers, H., Clements, J.C. & Nelson, M.N. (2013). How a phosphorus-acquisition strategy based on Carboxylate exudation powers the success and Agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot., 100(2), pp. 263–288. DOI:10.3732/ajb.1200474
  42. Lambers, H. & Plaxton, W.C. (2015). Phosphorus: Back to the Roots, in: Phosphorus Metabolism in Plants, Annual Plant Reviews, vol. 48, Plaxton W. C., Lambers H. (Eds.). JohnWiley & Sons, pp. 3-24. DOI: 10.1002/9781118958841.ch1
  43. Manzoor, H., Bukhat, S., Rasul, S., Rehmani, M.I.A., Noreen, S., Athar, H.R. , Zafar, Z.U., Skalicky, M., Soufan, W., Brestic, M., Habib-ur-Rahman, M., Ogbaga, C.C. & Sabagh, A. (2022). Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance. Front. Plant Sci. 13, 860664. DOI:10.3389/fpls.2022.860664
  44. Monei, N., Hitch, M., Heim, J., Pourret, O.,Heilmeier, H. & Wiche O. (2022) Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius. Environmental Science and Pollution Research, 29, pp. 57172–57189. DOI:10.1007/s11356-022-19775-x
  45. Nayak, S., Mishra, C.S.K., Guru, B. & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol., 32, pp. 613-617.
  46. Ochmian, I., Kozos, K., Jaroszewska, A. & Malinowski, R. (2021). Chemical and Enzymatic Changes of Different Soils during Their Acidification to Adapt Them to the Cultivation of Highbush Blueberry. Agronomy, vol.11(1), 44. DOI: 10.3390/agronomy11010044
  47. Ogbaga, C.C., Athar, H.-u.-R., Amir, M., Bano, H., Chater, C.C.C. & Jellason, N.P. (2020). Clarity on frequently asked questions about drought measurements in plant physiology. Scientific African, 8, e00405. DOI:10.1111/ppl.13327
  48. Ouyang, X., Ma, Zhang, R., Li, P., Gao, M., Sun, C., Weng, L., Chen, Y., Yan, S. & Li, Y. (2022). Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. Journal of Hazardous Materials, 431: 128624. DOI:10.1016/j.jhazmat.2022.128624
  49. Pearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A & Lambers, H. (2006). Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil, 288, pp. 127–139. DOI:10.1007/s11104-006-9099-y
  50. Piszcz U. (2013). Ocena przydatności testów do opisu stanu fosforowego gleb uprawnych, Monografie CLXVI, Wyd. UP we Wrocławiu, Wrocław. (in Polish)
  51. Pliaka, M. & Gaidajis, G. (2022) Potential uses of phosphogypsum: A review. J. Environ. Sci. Health, Part A, 57:9, pp. 746-763, DOI:10.1080/10934529.2022.2105632
  52. PN-R-04023. (1996). Chemical and agricultural analysis-determination of the content available phosphorus in mineral soil. Warszawa: Polish Standards Committee.
  53. Quintero, J.M., Enamorado, S., Mas, J.L., Abril J.M., Polvillo, O. & Delgado, A. (2014). Phosphogypsum amendments and irrigation with acidulated water affect tomato nutrition in reclaimed marsh soils from SW Spain. Span J Agric Res, 12(3), pp. 809-819. DOI:10.5424/sjar/2014123-5273
  54. Rajković, M.B., Blagojević, S.D., Jakovljević, M.D. & Todorović, M.M. (2000). The Application of Atomic Absorption Spectrophotometry (AAS) for Determining the Content of Heavy Metals in Phosphogypsum. Journal of Agricultural Sciences, vol. 45, no 2, pp. 155-164.
  55. Roberts, T.L. & Johnston, A.E. (2015). Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl, vol. 105, pp. 275-281. DOI: 10.1016/j.resconrec.2015.09.013
  56. Römer, W., Dong-Kyu, K., Egle, K., Gerke, J. & Keller, H. (2000). The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L. and Lolium multiflorum. Lam. J. Plant Nutr. Soil Sci., 163, pp. 623–628. DOI:10.1002/1522-2624(200012)163:6<623::AID-JPLN623>3.3.CO;2-3
  57. Rothwell, S.A., Doody, D.G., Johnston, C., Forber K.J., Cencic O., Rechberger, H. & Withers, P.J.A (2020) Phosphorus stocks and flows in an intensive livestock dominated food system. Resources, Conservation and Recycling, vol. 163,105065. DOI:10.1016/j.resconrec.2020.105065
  58. Saadaoui, E., Ghazel, N., Ben Romdhane, C. & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems – A review. Int. J. Environ. Stud., 74, pp. 558–567. DOI:10.1080/00207233.2017.1330582
  59. Shahid, S.A. & Rehman, K. (2011). Soil salinity development, classification, assessment and management in irrigated agriculture, in: Handbook of plant and crop stress Passarakli M. (Eds.), CRC Press/Taylor & Francis Group, Boca Raton, pp. 23–39.
  60. Smaling, E., Toure, M., Ridder, N.D., Sanginga, N. & Breman, H. (2006). Fertilizer Use and the Environment in Africa: Friends or Foes? Background Paper Prepared for the African Fertilizer Summit, Abuja, Nigeria.
  61. Smaoui-Jardak, M., Kriaa, W., Maalej, M., Zouari, M., Kamoun, L., Trabelsi, W., Abdallah, F.B. & Elloumi, N. (2017). Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.). Ecotoxicology, 26, pp. 1089-1104. DOI:10.1007/s10646-017-1836-x
  62. Syers, J.K., Johnston, A.E. & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, FAO. Rome.
  63. Takasu, E., Yamada, F., Shimada, N., Kumagai, N., Hirabayashi, T. & Saigusa, M. (2006). Effect of phosphogypsum application on the chemical properties of Andosols, and the growth and Ca uptake of melon seedlings. Soil Science and Plant Nutrition, 52, pp. 760–768. DOI:10.1111/j.1747-0765.2006.00093.x
  64. Tian, D., Xia, J., Zhou, N., Xu, M., Li, X., Zhang, L., Du S. & Gao H. (2022) The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy, 12, 646. DOI:10.3390/agronomy12030646
  65. Trejo, N., Matus, I., Del Pozo, A., Walter, I. & Hirzel, J. (2016). Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in Tyree contrasting agroclimatic conditions of Chile. Chilean Journal of Agricultural Research, 76(2), pp. 228-235.
  66. Verheijen, F.G.A, Zhuravel, A., Silva, F.C., Amaro, A., Ben-Hur, M. & Keizer, J.J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, vol. 347, pp. 194-202. DOI:10.1016/j.geoderma.2019.03.044
  67. Vyshpolsky, F., Bekbaev, U., Mukhamedjanov, Kh., Ibatullin, S., Paroda, R., Yuldashev, T., Karimov, A., Aw-Hassan, A., Noble, A. & Qadir, M. (2008). Enhancing the Productivity of High-Magnesium Soil and Water Resources. LDD, vol. 19, issue 1, pp. 45-56. DOI:10.1002/ldr.814
  68. Watanabe, F.S. & Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Am. Proc., 29 (6), pp. 677–678.
  69. Xu, W., Zhang, Q., Yuan, W., Xu, F., Aslam, M.M., Miao, R., Li, Y., Wang, Q., Li, X., Zhang, X., Xia, T. & Cheng F. (2020) The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications, vol. 11, 1069. DOI:10.1038/s41467-020-14891-z
  70. Yakovlev, A.S., Kaniskin, M.A. & Terekhova, V.A. (2013). Ecological Evaluation of Artificial Soils Treated with Phosphogypsum. Eurasian Soil Science, vol. 46, no. 6, pp. 697–703. DOI:10.1134/S1064229313060124
  71. Yanai, M., Uwasawa, M. & Shimizu, Y. (2000). Development of a New Multinutrient Extraction Method for Macro- and Micro- Nutrients in Arable Land Soil. Soil Sci. Plant Nutr., 46 (2), pp. 299–313. DOI:10.1080/00380768.2000.10408786
Przejdź do artykułu

Autorzy i Afiliacje

Kamila Stępień
1
Piotr Stępień
1
Urszula Piszcz
1
Zofia Spiak
1

  1. Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Regions with warm climate are poor in organic matter or have a deficit of soil. The purpose of the work was to select the optimal mix from biodegradable wastes such as cardboard (Cb), natural textiles (Tx) newspaper (Np), colored newspaper (Cp), and office paper (Op) for creating artificial soil by combining these materials with compost and sand. To select the optimum mix, 15 samples were taken (3 from each type of waste in the following proportions: 25%, 50% and 75% ). The optimum mix was analyzed for grass germination rate and root development. Tests were performed in the laboratory with conditions similar to those of regions with warm climate and soil deficiency in a specially designed testing spot (bioterm). The effects of particular mixes on plant germination rate and growth were measured. Out of all mixes, the textile compositions Tx50 and Tx25 supported best the plant propagation. During the whole experimental process, the grass showed various growth tendencies. The best results for grass height were observed for mixes with textiles and colored newspaper. Based on this data and subsequent laboratory research, the best substrate composition was selected. For the whole period of the tests, germination rate in the pot with the mix was higher than the germination rate in the control sample with compost. Considering the experimental conditions of this research, the tested substrates can be used to aid in plant propagation, especially in regions with warm climate and soil deficiencies, and for restoration of damaged land areas.
Przejdź do artykułu

Bibliografia

  1. Achiba, W., Gabteni, N., Lakhdar, A., Laing, G.D., Verloo, M., Jedidi, N. & Gallali, T. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems and Environment. 130, pp. 156-163. DOI:10.1016/j.agee.2009.01.001
  2. Alam, A., Nawaz Chaudhry, M.N., Ahmad, S.R., Batool, A., Mahmood, A. & Al-Ghamdi, H. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47, No 4, pp. 84-92. DOI:10.24425/aep.2021.139504
  3. Asdrubali, F., Pisello, A.L. , Alessandro, F.D., Bianchi, F., Cornicchia, M. & Fabiani, C. (2015). Innovative Cardboard Based Panels with Recycled Materials from the Packaging Industry: Thermal and Acoustic Performance Analysis. Energy Procedia. 78, pp. 321-326. DOI:10.1016/j.egypro.2015.11.652
  4. Aspiras, F.F. & Manalo, J.R.I. (1995). Utilization of textile waste cuttings as building material. Journal of Materials Processing Technology. 48, pp. 379-384. DOI:10.1016/0924-0136(94)01672-N
  5. Awwad, E., Mabsout, M., Hamad, B., Farran, M. T. & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials. 35, pp. 710-717. DOI:10.1016/j.conbuildmat.2012.04.119
  6. Avató, J.L. & Mannheim, V. (2022). Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios. Energies 15 (15): 5423. DOI:10.3390/en15155423
  7. Ayrilmis, N., Candan, Z. & Hiziroglu, S. (2008). Physical and mechanical properties of cardboard panels made from used beverage carton with veneer overlay. Materials & Design. 29, pp. 1897-1903. DOI:10.1016/j.matdes.2008.04.030.
  8. Bustamante, M.A., Said-Pullicino, D., Agullóa, E., Andreua, J., Paredesa, C. & Morala, R. (2011). Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems and Environment. 140, pp. 80-87. DOI:10.1016/j.agee.2010.11.014
  9. Çay, A, Yanık, J, Akduman, Ç, Duman, G. & Ertaş, H. (2020). Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. Journal of Cleaner Production. 251, Article no. 119664. DOI:10.1016/j.jclepro.2019.119664
  10. Espinosa, E., Rol, F., Bras, J. & Rodríguez, A. (2019). Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. Journal of Cleaner Production. 239, Article no. 118083. DOI:10.1016/j.jclepro.2019.118083
  11. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste.
  12. Hargreaves, J.C., Adl, M.S. & Warman, P.R.(2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems and Environment. 123, pp. 1-14. DOI:10.1016/j.agee.2007.07.004
  13. Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M. & Sixta, H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management. 97, pp. 88-96. DOI:10.1016/j.wasman.2019.07.040
  14. Homem, N.C. & Pessoa Amorim M.T. (2020). Synthesis of cellulose acetate using as raw material textile wastes. Materials Today: Proceedings. 31, pp. S315-S317. DOI:10.1016/j.matpr.2020.01.494
  15. Kymäläinen, H.R. & Sjöberg, A.M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment. 43, pp. 1261-1269. DOI:10.1016/j.buildenv.2007.03.006
  16. Lederer, J., Karungi, J. & Ogwang, F. (2015). The potential of wastes to improve nutrient levels in agricultural soils: A material flow analysis case study from Busia District, Uganda. Agriculture, Ecosystems and Environment. 207, pp. 26-39. DOI:10.1016/j.agee.2015.03.024
  17. Lei, W., Zhou, X., Fang, C., Yonghu,Song, Y.L., Wang, C. & Huang, Z. (2019). New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management. 95, pp. 59-69. DOI:10.1016/j.wasman.2019.06.003
  18. Mannheim V (2022). Perspective: Comparison of end-of-life scenarios of municipal solid waste from viewpoint of life cycle assessment. Frontiers in Built Environment. 8:991589. DOI: 10.3389/fbuil.2022.991589
  19. Ordinance of the Minister of Agriculture and Rural Development on the realization of some regulations on the manures and fertilisation. Journal of Laws. no 119, item 765, June 18, 2008 (in Polish)
  20. Ordinance of the Minister of Environment on the conditions for the introduction of waste to waters or soil and substances particularly hazardous for the water environment, Journal of Acts 2014, item 1800, December 16 (in Polish)
  21. Ordinance of the Minister of Environment on the evaluation of contamination of the Earth’s surface. Journal of Laws dated 2016 item 1395, September 1, 2016 (in polish)
  22. Pelegrini, M., Gohr Pinheiro, I. & Valle, J. A. B. (2010). Plates made with solid waste from the recycled paper industry. Waste Management. 30, pp. 268-273. DOI:10.1016/j.wasman.2009.08.008
  23. Rajput, D., Bhagade, S. S., Raut, S. P., Ralegaonkar, R. V. & Sachin Mandavgane, A. (2012). Reuse of cotton and recycle paper mill waste as building material. Construction and Building Materials. 34, pp. 470-475. DOI:10.1016/j.conbuildmat.2012.02.035
  24. Si, Y. & Guo, Z. (2016). Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. Journal of Colloid and Interface Science. 477, pp. 74-82. DOI:10.1016/j.jcis.2016.05.044
  25. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection. 44, No 4, pp. 96-110. DOI 10.24425/aep.2018.122306
  26. Tatariants, S.Y.M., Tichonovas, M., Sarwar, Z., Jonuškienė, I. & Kliucininkas, L. (2019). A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling.145, pp. 359-369. DOI:10.1016/j.resconrec.2019.02.031
  27. Zhou X.Y., Zheng, F., Li, H. & Lu C.L. (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings. 42, pp. 1070-1074. DOI:10.1016/j.enbuild.2010.01.020
Przejdź do artykułu

Autorzy i Afiliacje

Mohamed Alwaeli
1
Mohammad Alshawaf
2
Marta Klasik
3

  1. Silesian University of Technology, Gliwice, Poland
  2. College of Life Sciences, Kuwait University, Kuwait
  3. free scientist
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

An attempt was made to determine the correlation between the granulometric structure of bottom sediments and the content of speciation forms of phosphorus and selected metals. Using the sedimentation method, the bottom sediments of a thermally contaminated dam reservoir were divided into fast and slow-draining fractions. Measurements of granulometric composition were made, determining the volume proportions of sediment particles in the range of 0.1 m to 650 m. Particle share sizes were determined in the size range: 0.1–50 m (F1), 50–100 m (F2), 100–200 m (F3), 200–400 m. (F4). The study showed that the content of speciation forms of phosphorus and selected metals remains related to the granulometric structure of bottom sediments. The content of organic matter in sediments is determined by the proportion of the smallest particles, from 0.1 to 50 μm, at the same time these particles most strongly aff ect the reduction conditions of sediments. According to Gilford›s correlation thresholds, there was no correlation between the proportion of sediment particles with dimensions of 0.1–50 μm and the concentration of speciation forms of phosphorus. For particles with dimensions of 50–100 μm, the strongest correlation was observed for the concentration of the EP fraction and for the WDP fraction (r2 = 0.4048, r2 = 0.3636). A strong correlation between the size of sediment particles and the concentration of speciated forms of phosphorus was noted for particles with dimensions of 100–200 μm and 200–400 μm. The coeffi cient of determination was for AAP, EP, WDP and RDP, respectively: 0.8292, 0.891, 0.7934, 0.47. The relationship between particles in the 0.1–50 m range and iron (Fe) concentration, R2 – 0.3792, aluminum (Al) R– 0.3208, and zinc (Zn) R2 – 0.4608, was classifi ed as medium. For particles in the 50–100 m range, a medium correlation with calcium (Ca) and magnesium (Mg) concentrations is apparent, R2 0.4443 and 0.3818, respectively. For particles 100–200 mm and 200–400 mm, an almost full correlation is noted for iron (Fe) R2 – 0.9835, aluminum (Al) R2 – 0.9878, calcium (Ca) R2 – 0. 824, very strong for manganese (Mn) R2 – 0.6817, and zinc (Zn) R2 – 0.7343. There is a very strong correlation between the concentration of the AAP fraction with the concentration of iron (Fe) R2 – 0.8694 and a strong correlation between the concentration of EP with the concentration of iron (Fe) R2 – 0.609. There is a strong correlation between the concentration of the AAP and EP fractions with the concentration of aluminum (Al) R2 – 0. 6253 and 0.8327. The concentration of AAP and EP fractions with the concentration of calcium (Ca) R2 – 0.5941 and 0.7576 remains in a strong relationship. The correlation between the concentration of RDP fractions and the concentration of magnesium (Mg) and manganese (Mn) remains in a medium relationship. The concentration of the EP fraction (Olsen-P) is in a strong relationship with the concentration of organic matter (R2 –.0.6763). No correlation was found between the concentration of the residuum form and the concentrations of organic matter, iron (Fe) and aluminum (Al). A medium correlation was found between the concentration of the residuum form and the concentration of calcium (Ca), magnesium (Mg), manganese (Mn) – R2 = 0.4206 and zinc (Zn).
Przejdź do artykułu

Bibliografia

  1. Adiyiah, J., Acheampong, M. A., Ansa, E. D. O. & Kelderman P. (2014). Grainsize analysis and metals distribution in sediment fractions of Lake Markermeer in The Netherlands. Int J Environ Sci Toxicol Res 2(8):160–167.
  2. Aimin Zhou, Hongxiao Tang, Dongsheng Wang, (2005). Phosphorus adsorption on natural sediments: Modelling and effect of pH and sediment composition, Water Research, 38, 1245 – 1254.
  3. Aleksander-Kwaterczak, U., Sikora, W.S. & Wójcik, R. (2004), Heavy metals concent distribution in grain-size fractions of the Odra River sediments, Geologia, 30, 2, 165-174.
  4. Anishchenko, O. V.,. Glushchenko, L. A., Dubowskaya, O. P., Zuev, I.V., Ageev, A.V. & Ivanov, E.A. (2015). Morphometry and metal concentrations in water and bottom sediments of mountain lakes in Ergaki Natural Park, Western Sayan Mountains, Water Resources, vo. 42, Issue 5, 670-682.
  5. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method, 15 years after the termination of the lake restoration procedure. Water, 11, 10, 1-20. DOI: 10.3390/w11102175.
  6. Aydin Isil, F., Aydin, A., Saydut, C. & Hamamci. (2009). A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment, Journal of Hazardous Materials, 168, 664-669.
  7. Brogowski Z.& Kwasowski W. (2015). An attempt of using soil grain size in calculating the capacity of water unavailable to plants. Soil Science Annual, vol. 66(1), 21 – 28.
  8. Canavan, R.W., Van Capellen, P., Zwolskan, J.J.G., van der Berg, G.A. & Slomp, C.P. (2007). Geochemistry of trace metals in a fresh water sediments; field results and diagenetic modelling. Science of Total Environment 381, 263-279.
  9. Clark, M.W. (1923). Studies on Oxidation-Reduction. London.
  10. Dunalska, J.A. (2019). Lake restoration - theory and practice, Monograph of the Committee on Environmental Engineering of the Polish Academy of Sciences. Monografia Komitetu Inzynierii Środowiska PAN, Nr 148 (in Polish)
  11. Frankowski M., Sobczyński, T. & Ziola-Frankowska, A. (2005). The effect of Grain Size Structure on the Kontent of Heavy Metals in Alluvial Sediments of the Odra River, Polish Journal of Environmental Studies 14, 81-86.
  12. Fuentes-Hernández, M. V. (2000) Nitrógeno, fósforo y cociente CIN en los sedimentos superficiales de la laguna de Chacopata, Sucre, Venesuela, Rev. Biol. Trop. 48 Sup. 1: 261-268.
  13. Gierszewski, P. (2018). Hydromorphological conditions of the functioning of the geoecosystem of the Włocławski reservoir, Wyd. Instytut Geografii i Przestrzennego Zagospodarowania PAN, Prace Geograficzne Nr 268, Warszawa 2018.(in polish).
  14. Gierszewski P. (2008). The concentration of heavy metals in the sediments of the Włocławek reservoir as an indicator of the hydrodynamic conditions of deposition, Landform Analysis, Vol. 9: 79–82. (in polish).
  15. Grochowska, J. (2016). Surface runoff of calcium, magnesium, iron, manganese, nitrogen and phosphorus from the Upper Pasłęka catchment, Woda – Środowisko – Obszary Wiejskie, (X-XII), T. 16, Z. 4 (56). 1642-8145s. 33–42. (in polish).
  16. Grochowska, J., Tandyrak, R., Dunalska, J. & Górniak, D. (2004). Drainage basin impact on the hydrochemical conditions in small water reservoirs of the ekstern peripheries of Olsztyn, Limnological Review 4, 95-100.
  17. Guilford J.P. (1978). The nature of human intelligence, , tłum. B. Czerniawska, W. Kozłowski, J.Radzicki, PWN, Warszawa (in polish)
  18. Jancewicz, A., Dmitruk, U., Sośnicki, Ł., Tomczuk, U. & Bartczak, A. (2012). The impact of the catchment development on the quality of bottom sediments in selected dam reservoirs. Ochrona Środowiska, Vol 34, 4. (in polish).
  19. Kostecki, M. (2022), Hydrochemical and hydrobiological studies of the Rybnik dam reservoir in terms of the current state of the quality of water resources and monitoring the phenomena occurring in it, 2002-2022 (unpublished work, in Polish).
  20. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska - thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection 47, 115-127, DOI:10.24425/aep.2021.13728383.
  21. .Kostecki, M. (2014). Restoration anthropogenic lake Pławniowice by hypolimnetic withdrawal metod – limnological study, Works&Studies IPIŚ PAN Zabrze, no 84, (in polish).
  22. Kostecki, M. (2003). Allocation and transformations of selected pollutants in the dam reservoirs of the Kłodnica river node and the Gliwice Canal, Works & Studies IPIŚPAN Zabrze, no 57.
  23. Koś, K. & Zawisza, E. (2015). Geotechnical characteristics of bottom sediments of the Rzeszów Reservoir. Journal of Civil Engineering, Environmenta and Architecture JCEEA, t. XXXII, 62 (3/II/15), 195-208. (in polish).
  24. Lamorski K., Bieganowski, A., Ryżak, M., Sochan, A., Sławiński, C. & Stelmach W. (2014). Assessmentof the usefulness of particle size distribution measured by laser diffraction for soil water retentionmodelling. Journal of Plant Nutrition and Soil Sience, 177(5), 803 – 8013.
  25. Ligęza, S. & Smal, H. (2003). Particle size distribution of bottom sediments from the discharge water reservoir of Zakłady Azotowe Puławy. Acta Agrophysica 87(1(2)):271-277. (in polish).
  26. Ligęza, S. & Smal, H. (2002). Differentiation of pH and granulometric composition of bottom sediments of the Zemborzycki Reservoir. Acta Agrophysica 70, 235-245. (in polish).
  27. Machowski, R., Rzetala, M.A., Rzętala, M. & Solarski, M. (2019). Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland), Scientific Reports, 9, 14445.
  28. Mander, D. & Jarvet, A. (1998). Buffering role of smal! reservoirs in agricultural catchments. Internat. Rev. Hydrobiol., 83 (spec. iss.), 639-646.
  29. Мартынов, A. B. (2018). Редкоземельные элементы в аллювиальных почвах поймы р. Амур: влияние катастрофического паводка 2013 г. Вестник СПбГУ. Науки о Земле. Т. 63. Вып. 2
  30. Matijevic, S., Bilic, J., Ribicic, D. & Dunatow, J. (2012). Distribution of phosphorus species in below-cage sediments at the tuna farms in the middle Adriatic Sea (Croatia), ACTA ADRIAT.,53(3): 399 – 412. ISSN: 0001-5113 AADRAY
  31. Matijewic, S., Kujakowic-Gaspic, Z., Bogner, D., Gugic, A. & Martinowic, I. (2008). Vertical distribution of phosphorus species and iron in sediment at open sea stations in the middle Adriatic region. ACTA ADRIAT., 49(2): 165 – 184. ISSN: 0001-5113 AADRAY.
  32. Matijevic, S., Bogner, D., Morovic, M., Ticina, V. & Grec., B., (2008). Characteristics of the sediment along the Eastern Adriatic coast (Croatia). Fresenius Environmental Bulletin, 17, 10B, SI, 1793-1772.
  33. Mazierski, J. & Kostecki M. (2021). Impact of the heated water discharge on the water quality in a shallow lowland dam reservoir. Archives of Environmental Protection, 47, 2, 29-47. DOI: 10.24425/aep.2021.137276.
  34. Moses, L., Sheela A., Janaki, L., Sabu, J. (2011). Influence of lake morphology on water quality, Environmentasl Monitoring and Assessment, Volume: 182, Issue: ‏ 1-4, Pages: 443-454, (2011).
  35. Pohl, A., Tytła, M., Kernert, J. & Bodzek, M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis. Odsalanie i uzdatnianie wody, 258, 207–222. Doi:10.5004/dwt.2022.28459
  36. Qixing Zhou, Gibson, Ch.E. & Yinmei Zhu, (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK, Chemosphere. 42, 221 – 225.
  37. Rząsa, S. & Owczarzak, W. (2013). Methods for the granulometric analysis of soil for science and practice. Polish J. Soil Sci., 46(1), 1-50.
  38. Rzętała, M. (2008). Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopresion a case study of Upper Silesian Region, Wyd. Prace Naukowe Uniwersytetu Śląskiego, Nr 2643, Katowice 2008.(in Polish).
  39. Sedlácek, J., Bábek, O. & Nováková, T. (2017). Sedimentary record and anthropogenic pollution of a complex, multiplesource fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic. Sci. Total Environ. 574, 1456–1471.
  40. Sojka, M., Siepak, M. & Gnojska, E. (2013). Assessment of heavy metals content in bottom sediments of the initial part of the Old Town reservoir on the Poviat river. Annual Set The Environment Protection, Rocznik Ochrona Środowiska, Volume/Tom 15. ISSN 1506-218X 1916–1928. (in polish).
  41. Stocker, R. & Imberger, J. (2003). Horizontal transport and dispersion in the surface layer of a medium‐sized lake. Limnol. Oceanogr. 48(3), 971-982. Doi:10.4319/lo.2003.48.3.0971.
  42. Suresh, G., Sutharsan, P., Ramasamy, V. & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 84, 117–124.
  43. Tarnawski, M., Baran, A. & Jasiewicz, C. (2012). Assessment of physico-chemical properties of the bottom sediments of Hańcza reservoir. Proceedings of ECOpole DOI:10.2429/proc.2012.6(1)042 2012;6(1). (in polish)
  44. The Polish standard 2008. The Solis and mineral materiale – Sampling and grainsize analysis.
  45. Tuszyńska, A. & Kołecka, K. (2011). Influence of the particle size distribution of pollutants on the quality of water and sewage treated in ecological systems. Gaz, Wwoda i Technika Sanitarna, 12, 486-490 (in polish).
  46. Wojtkowska, M. & Matula, M. (2016) Analysis of heavy metals in selected granulometric fractions of bottom sediments of the Utrata River, Annual Set The Environment Protection, Rocznik Ochrona Środowiska, 18, ISSN 1506-218X 667-680. (in polish).
  47. Wojtkowska, M., Niesiobędzka, K. & Krajewska, E. (2005). Heavy metals in water and bottom sediments of the Czerniakowskie Lake. [In:] The cycle of elements in nature. B. Gworek (Ed). Warszawa: Wydaw. IOŚ s. 194–197, (in polish).
Przejdź do artykułu

Autorzy i Afiliacje

Maciej Kostecki
1
ORCID: ORCID

  1. Institute of Environmental Engineering, PAS, Zabrze, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

To analyze the composition of norfloxacin-resistant bacteria and norfloxacin-degrading bacteria in pond water and sediment in subtropical China, the composition of antibiotic resistant bacteria in pond water and sediment enriched with norfloxacin-containing medium was analyzed by high-throughput sequencing. Sediment and water samples were collected from 3 fish ponds in subtropical China, and domesticated with norfloxacin, subsequently norfloxacin-resistant bacteria through high-throughput sequencing of 16S rDNA, and isolated norfloxacin- degrading bacteria. Our results showed that the pond sediment and water contain a variety of norfloxacin-resistant bacteria, mainly from Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Chloroflexi. Moreover, we isolated two norfloxacin-degrading bacteria (NorXu-2 and NorXu-3). The norfloxacin-degrading rate by NorXu-2 and NorXu-3 in the culture mediums with 200 μg/mL was the highest, which was up to 49.71% and 35.79%,respectively. When the norfloxacin concentration was 200 μg/mL, NorXu-2 and NorXu-3 had the best norfloxacin-degrading effect at pH of 6, and the degradation rates were 53.64% and 45.54%, respectively. Moreover, NorXu-3 exhibited a good tolerance to high NaCl concentration. These results not only provided basic data for the follow-up study of the molecular mechanism of antimicrobial microbial degradation, but also provided potential norfloxacin degrading bacteria for norfloxacin removal and bioremediation in aquaculture environment.
Przejdź do artykułu

Bibliografia

  1. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 5, pp. 335-336. DOI:10.1038/nmeth.f.303
  2. Edgar, R.C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 10, pp. 996-998. DOI:10.1038/nmeth.2604
  3. FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. FAO, Rome 2020. DOI:10.4060/ca9229en.
  4. Fu, B.M., Chen, L.W., Cai, T.M., Yang, Q. & Ding, D.H. (2017). Isolation and characterization of norfloxacin-degrading bacterium strain NOR-36. Acta Scientiae Circumstantiae, 37, 2, pp. 576-584. DOI:10.13671/j.hjkxxb.2016.0245
  5. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH. Archives of Environmental Protection, 48, 2, pp. 34-41. DOI:10.24425/aep.2022.140764
  6. Gong, W., Gao, S., Zhu, Y., Wang, G., Zhang, K., Li, Z., Yu, E., Tian, J., Xia, Y., Xie, J. & Ni, J. (2021). Effect of the aerobic denitrifying bacterium Pseudomonas furukawaii ZS1 on microbiota compositions in grass carp culture water. Water, 13, pp. 1329, DOI:10.3390/w13101329
  7. Guo, J., Zhang, Y., Zhou, X. & Liu, Z. (2016). Occurrence and removal of fluoroquinolones in municipal sewage: a review. Environmental Pollution and Control, 38, 2, pp. 75-80. DOI:10.15985/j.cnki.1001-3865.2016.02.015
  8. Han, Y., Wang, J., Zhao, Z., Chen, J., Lu, H. & Liu, G. (2017). Fishmeal application induces antibiotic resistance gene propagation in mariculture sediment. Environmental Science & Technology, 51, 18, pp. 10850-10860. DOI:10.1021/acs.est.7b02875
  9. Hao, Q., Xu, X., Chen, H., Liu, S., Chen, J., Liu, S. & Ying, G. (2017). Residual antibiotics in the Nansha aquaculture area of Guangzhou. Journal of Tropical Oceanography, 36, 1, pp. 106-113. DOI:10.11978/2016001
  10. Jałowiecki, Ł., Płaza, G., Ejhed, H. & Nawrotek, M. (2019). Aerobic biodegradation of norfloxacin and ofloxacin by a microbial consortium. Archives of Environmental Protection, 45, 4, pp. 40-47. DOI:10.24425/aep.2019.130240
  11. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A.Q., Qamar, F.N., Mir, F., Kariuki, S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Borwn, E.D. & Cars, O. (2013). Antibiotic resistance - the need for global solution. The Lancet Infectious Diseases, 13, 12, pp. 1057-1098. DOI:10.1016/S1473-3099(13)70318-9
  12. Lemańska, N., Felis, E., Poraj-Kobielska, M., Gajda-Meissner, Z. & Hofrichter, M. (2021). Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes. Archives of Environmental Protection, 47, 1, pp. 10-18. DOI:10.24425/aep.2021.13643
  13. Liang, X., Shi, Z. & Huang, X. (2013). Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary. Ecology and Environmental Sciences, 22, 2, pp. 304-310. DOI: 10.3969/j.issn.1674-5906.2013.02.022
  14. Lin, B.K., Lyu, J., Lyu, X.J., Yu, H.Q., Hu, Z., Lam, J.C.W. & Lam, P.K.S. (2015). Characterization of cephalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. Journal of Hazardous Materials, 282, pp. 158-164. DOI:10.1016/j.jhazmat.2014.06.080
  15. Liu, H., Yang, Y.K., Ge, Y.H., Zhao, L., Long, S. & Zhang, R. (2016). Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system. Bioresource Technology, 222, pp. 114-122. DOI:10.1016/j.biortech.2016.09.096
  16. Liu, X. & Lu, S. (2018). Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China. China Environmental Science, 28, 1, pp. 320-329. DOI:10.3969/j.issn.1000-6923.2018.01.036
  17. Magoc, T. & Salzberg, S.L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 21, pp. 2957-2963. DOI:10.1093/bioinformatics/btr507
  18. Mao, L.T., Huang, J., Chen, Z.G., Ma, X.L. & Liu, H.R. (2019). Norfloxacin resistant bacterial compositions in sediments of Chinese subtropical fish pond. Applied Ecology and Environmental Research, 17, 1, pp. 1039-1048. DOI:10.15666/aeer/1701_10391048
  19. Monteiro, S.H., Garcia, F., Gozi, K.S., Romera, D.M., Francisco, J.G., Roura-Andrade, G.C.R. & Tornisielo, V.L. (2016). Relationship between antibiotic residues and occurrence of resistant bacteria in Nile tilapia (Oreochromis niloticus) cultured in cage-farm. Journal of Environmental Science and Health, Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 51, 12, pp. 817-823. DOI:10.1080/03601234.2016.12008457
  20. Mühling, M., Woolven-Allen, J., Murrell, J.C. & Joint, I. (2018). Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. The ISME Journal, 2, pp. 379-392. DOI:10.1038/ismej.2007.97
  21. Mulla, S.I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M. & Yu, C.-P. (2018). Biodegradation of sulfamethoxazole in bacteria from three different origins. Journal of Environmental Management, 206, pp. 93-102. DOI:10.1016/j.jenvman.2017.10.029
  22. Ni, J., Li, X., He, Z. & Xu, M. (2017). A novel method to determine the minimum number of sequences required for reliable microbial community analysis. Journal of Microbiological Methods, 139, pp. 196-201. DOI:10.1016/j.mimet.2017.06.006
  23. Shao, S.C., Hu, Y.Y., Cheng, J.H. & Chen, Y. (2018). Degradation of oxytetracycline (OTC) and nitrogen conversion characteristics using a novel strain. Chemical Engineering Journal, 354, pp. 758-766. DOI:10.1016/j.cej.2018.08.032
  24. Wang, M., Yu, S., Hong, Y. & Sun, D. (2011). Residual characterization of multi-categorized antibiotics in five typical aquaculture waters. Ecology and Environmental Sciences, 20, 5, pp. 934-939. DOI:10.3969/j.issn.1674-5906.2011.05.026
  25. Wu, Y., Feng, P.Y., Li, R., Chen, X., Li, X., Sumpradit, T. & Liu, P. (2019). Progress in microbial remediation of antibiotic-residue contaminated environment. Chinese Journal of Biotechnology, 35, 11, pp. 2133-2150. DOI:10.13345/j.cjb.190164
  26. Xiang, J., He, T., Wang, P., Xie, M., Xiang, J. & Ni, J. (2018). Opportunistic pathogens are abundant in the gut of cultured giant spiny frog (Paa spinosa). Aquaculture Research, 49, 5, pp. 2033-2041. DOI:10.1111/are.13660
  27. Yang, J., Ying, G., Liu, S., Zhou, L., Zhao, J., Tao, R. & Peng, P. (2012). Biological degradation and microbial function effect of norfloxacin in a soil under different conditions. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 47, 4, pp. 288-295. DOI:10.1080/03601234.2012.638886
  28. Yang, Z., Fan, T.-J. & Xu, B. (2020). Norfloxacin induces apoptosis and necroptosis in human corneal epithelial cells. Toxicology in Vitro, 66, pp. 104868. DOI:10.1016/j.tiv.2020.104868
  29. Zhang, G., Xue, Y., Wang, Q., Wang, P., Yao, H., Zhang, W., Zhao, J. & Li, Y. (2019). Photocatalytic oxidation of norfloxacin by Zn0.9Fe0.1S supported on Ni-foam under visible light irradiation. Chemosphere, 230, pp. 406-415. DOI:10.1016/j.chemosphere.2019.05.015
  30. Zhang, J.Y., Peng, X.X. & Jia, X.S. (2019). Isolation and characterization of high efficiency sulfamethazine-degrading bacterium strain J2. Acta Scientiae Circumstantiae, 39, 9, pp. 2919-2927. DOI:10.13671/j.hjkxxb.2019.0096
  31. Zhang, X., Cui, L., Li, S., Liu, X., Han, X., Jiang, K., Yu, X., Xu, L., Wu, F., Song, D. & Gao H. 2020. China Fishery Statistical Yearbook 2020. China Agriculture Press, Beijing 2020.
  32. Zhao, T., Chen, Y., Han, W. & He, Y. (2016). The contamination characteristics and ecological risk assessment of typical antibiotics in the upper reaches of the Dongjiang River. Ecology and Environment Sciences, 25, 10, pp. 1707-1713. DOI:10.16258/j.cnki.1674-5906.2016.10.016
Przejdź do artykułu

Autorzy i Afiliacje

Lutian Mao
1
Lifen Chen
1
Xirui Wang
1
Zhongbao Xu
1
Hui Ouyang
1
Biyou Huang
1
Libin Zhou
1

  1. Huizhou University, Huizhou City, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Many tons of micro- and nano-sized plastic particles enter the aquatic environment every year, due to increasing plastic production, with the consequent risk of microplastics contaminating our environment. Addressing this multifaceted threat requires innovative technologies that can efficiently remove microplastics from the environment. Therefore, there is an urgent need to study the efficiency of the removal of microplastics by different water and wastewater treatment technologies. After short overviewed the source, occurrence, and potential adverse impacts of microplastics to human health, we then identified promising technologies for microplastics removal, including physical, chemical, and biological approaches. A detailed analysis of the advantages and limitations of different techniques was provided. According to literature data, the performance of microplastics removal is as follows: membrane bioreactor (>99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (>90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separation, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of microplastics removal. Hybrid treatment such as the MBR-UF/RO system, coagulation followed by ozonation, adsorption, dissolved air flotation, filtration, and constructed wetlands based hybrid technologies have shown very promising results in the effective removal of microplastics. Lastly, research gaps in this area are identified, and suggestions for future perspectives are provided. We concluded this review with the current challenges and future research priorities, which will guide us through the path addressing microplastics contamination.
Przejdź do artykułu

Bibliografia

  1. Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A.O. & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut., 244, pp. 153–164. DOI: 10.1016/j.envpol.2018.10.039
  2. Ahmed, M.B., Rahman, M.S., Alom, J., (...), Zhou, J.L. & Yoon, M.-H. (2021). Microplastic particles in the aquatic environment: A systematic review, Science of The Total Environment, 775, 145793. DOI: 10.1016/j.scitotenv.2021.145793
  3. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214, pp. 836–851. DOI: 10.1016/j.biortech.2016.05.057
  4. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S. & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater., 323, pp. 274–298. DOI: 10.1016/j.jhazmat.2016.04.045
  5. Akarsu, C. & Deniz, F., 2020. Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater, CLEAN–Soil, Air, Water, 49, 2000146. DOI: 0.1002/clen.202000146
  6. Akbal, F. & Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269, pp. 214–222. DOI: 10.1016/j.desal.2010.11.001
  7. Alavian Petroody, S. S., Hashemi, S. H. & van Gestel, C. A. M. (2020). Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere 261, 128179. DOI: 10.1016/j.chemosphere.2020.128179
  8. Ali, S.S., Qazi, I.A., Arshad, M., Khan, Z., Voice, T.C. & Mehmood, C.T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes, Environ.Nanotechnol. Monit. Manag., 5, pp. 44–53. DOI:10.1016/J.ENMM.2016.01.001
  9. Anderson, Z.T., Cundy, A.B., Croudace, I.W., Warwick, P.E., Celis-Hernandez, O. & Stead, J.L. (2018). A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems, Sci. Rep., 8, 9428. DOI: 10.1038/s41598-018-27612-w
  10. Andrady, A.L., (2011). Microplastics in the marine environment, Mar. Pollut. Bull., 62(8), pp. 1596-1605. DOI: 10.1016/j.marpolbul.2011.05.030
  11. Antony, A., Low, J.H., Gray, S., Childress, A.E., Le-Clech, P. & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: A review, J. Membr. Sci., 383, pp. 1–16. DOI: 10.1016/j.memsci.2011.08.054
  12. Ariza-Tarazona, M.C., Villarreal-Chiu, J.F., Barbieri, V., Siligardi, C. & Cedillo-González, E.I. (2019). New strategy for microplastic degradation: Green photocatalysis using aprotein-based porous N-TiO2 semiconductor, Ceram. Int., 45, pp. 9618–9624. DOI: 10.1016/j.ceramint.2018.10.208
  13. Arossa, S., Martin, C., Rossbach, S. & Duarte, C.M. (2019). Microplastic removal by Red Sea giant clam (Tridacna maxima), Environmental Pollution, 252, pp. 1257–1266. DOI: 10.1016/J.ENVPOL.2019.05.149
  14. Atiq, N., Ahmed, S., Ali, M.I., Ahmad, B. & Robson, G. (2010). Isolation and identification of polystyrene biodegrading bacteria from soil, African Journal of Microbiological Research, 4(14), pp. 1537–1541. DOI: 10.5897/AJMR.9000457
  15. Auta, H., Emenike, C. & Fauziah, S (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut., 231, pp.1552–1559. DOI: 10.1016/j.envpo l.2017.09.043
  16. Auta, H.S., Emenike, C.U., Jayanthi, B. & Fauziah, S.H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment, Marine Pollution Bulletin, 127, pp. 15–21. DOI: 10.1016/j.marpolbul.2017.11.036
  17. Bache, D.H. & Gregory R. (2010). Flocs and separation processes in drinking water treatment: a review, Journal of Water Supply: Research and Technology-Aqua, 59 (1), pp. 16–30. DOI: 10.2166/aqua.2010.028
  18. Badola, N., Bahuguna, A., Sasson, Y. & Chauhan, J.S. (2022). Microplastics removal strategies: A step toward finding the solution, Front. Environ. Sci. Eng., 16(1): 7, DOI: 10.1007/s11783-021-1441-3
  19. Baresel, C., Harding, M. Fång, J. (2019). Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants, Applied Sciences, 9(4), 710. DOI: 10.3390/app9040710
  20. Barth, M., Wei, R., Oeser, T., Then, J., Schmidt, J., Wohlgemuth, F. & Zimmermann, W. (2015). Enzymatic hydrolysis of polyethylene films in an ultrafiltration membrane reactor, J. Memb. Sci., 494, pp. 182–187. DOI: 10.1016/j.memsci.2015.07.030
  21. Bayo, J., López-Castellanos, J. & Olmos, S. (2020a). Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Marine Pollution Bulletin, 156, 111211. DOI:10.1016/j.marpolbul.2020.111211
  22. Bayo, J., Olmos, S. & López-Castellanos, J. (2020b). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors, Chemosphere, 238, 124593. DOI: 10.1016/j.chemosphere.2019.124593
  23. Blair, R. M., Waldron, S. & Gauchotte-Lindsay, C. (2019). Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Research, 163, 114909. DOI: 10.1016/j.watres.2019.114909
  24. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI: 10.24425/aep.2019.130237
  25. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). Nano-photocatalysis in water and wastewater treatment, Desalination and Water Treatment, 243, pp. 51–74. DOI: 10.5004/dwt.2021.27867
  26. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3–18. DOI: 10.24425/aep.2019.126419
  27. Bui, X.T., Nguyen, P.T., Nguyen, V.T., Dao, T.S. & Nguyen, P.D. (2020). Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies, Environmental Technology & Innovation, 19, 101013. DOI: 10.1016/j.eti.2020.101013
  28. Cai, L., Wang, J., Peng, J., Wu, Z. & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments, Sci. Total Environ., 628, pp. 740–747. DOI: 10.1016/j.scitotenv.2018.02.079
  29. Carr, S.A., Liu, J. & Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants, Water Research, 91, pp. 174–182. DOI: 10.1016/j. watres.2016.01.002
  30. Chandra, P. & Enespa, S.D. (2020). Microplastic degradation by bacteria in aquatic ecosystem. in: Microorganisms for sustainable environment and health. Chowdhary, P., Raj, A., Verma, D. & Akhter Y., (Eds.) Elsevier, pp. 431–467. DOI: 10.1016/B978-0-12-819001-2.00022-X
  31. Chen, G., Feng, Q. & Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans, Sci. Total Environ., 703, 135504. DOI: 10.1016/j.scitotenv.2019.135504
  32. Chen, R., Qi, M., Zhang, G. Yi, C. (2018). Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield, IOP Conference Series: Earth and Environmental Science, 113, 012208. DOI: 10.1088/1755-1315/113/1/012208
  33. Chorghe, D., Sari, M.A. & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations, Water Research, 126, pp. 481–487. DOI: 10.1016/j.watre s.2017.09.057
  34. Conley, K., Clum, A., Deepe, J., Lane, H. & Beckingham, B. (2019).Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year, Water Research X, 3, 100030. DOI: 10.1016/j.wroa.2019.100030
  35. Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M. & Galloway, T.S. (2017). A small-scale, portable method for extracting microplastics from marine sediments, Environmental Pollution, 230, pp. 829–837. DOI: 10.1016/j.envpol.2017.07.017
  36. Corona, E., Martin, C., Marasco, R. & Duarte, C.M. (2020). Passive and active removal of marine microplastics by a mushroom coral (Danafungia scruposa), Frontiers in Marine Science, 7, 128, DOI: 10.3389/fmars.2020.00128
  37. Crawford, C. & Quinn, B. (2017). Microplastic separation techniques. In: Microplastic Contaminants. Crawford, C. & Quinn, B. (Eds.). Elsevier, Amsterdam, pp. 203–218. DOI: 10.1016/B978-0-12-809406-8.00009-8
  38. Cunha, C., Silva, .L, Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment. Environmental Pollution, 263, 114385. DOI: 10.1016/j.envpol.2020.114385
  39. Dawson, A.L., Kawaguchi, S., King, C.K., Townsend, K.A., King, R., Huston, W.M. & Bengtson Nash, S.M. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill, Nature Communications, 9(1), 1001. DOI: 10.1038/s41467-018-03465-9
  40. Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation, Journal of Hazardous Materials, 380, 120899. DOI: 10.1016/j.jhazmat.2019.120899
  41. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N. & Tassin, B. (2015). Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12(5), pp. 592-599. DOI: 10.1071/EN14167
  42. Durenkamp, M., Pawlett, M., Ritz, K., Harris, J.A., Neal, A.L. & McGrath, S.P. (2016). Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function, Environ. Pollut., 211, pp. 399–405. DOI: j.envpol.2015.12.063
  43. Edo, C., González-Pleiter, M., Leganés, ., Fernández-Piñas, F. & Rosa,l R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge, Environmental Pollution, 259, 113837. DOI: 10.1016/j.envpol.2019.113837
  44. Eerkes-Medrano, D., Thompson, R.C. & Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs, Water Research, 75, pp. 63–82. DOI: 10.1016/j.watres.2015.02.012
  45. Enfrin, M., Dumée, L.F. & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions, Water Research, 161, pp. 621–638. DOI: 10.1016/j.watres.2019.06.049
  46. Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K. & van Lier, J.B., (2012). A reviewon dynamic membrane filtration: materials. applications and future perspectives, Bioresour. Technol., 122, pp. 196–206. DOI: 10.1016/j.biortech.2012.03.086
  47. Eskandarloo, H., Kierulf, A. & Abbaspourrad, A. (2017). Light-harvesting synthetic nano-and micromotors: a review, Nanoscale, 9, pp. 12218–12230. DOI: 10.1039/C7NR05166B
  48. Ezugbe, E.O. & Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review, Membranes, 10, 89. DOI:10.3390/membranes10050089
  49. Feng, H.-M., Zheng, J.-C., Lei, N.-Y., Yu, L., Kong, K.H.-K., Yu, H.-Q., Lau, T.-C. & Lam, M.H.W. (2011). Photoassisted Fenton degradation of polystyrene, Environ. Sci. Technol., 45, pp. 744–750. DOI: 10.1021/es102182g
  50. Foshtomi, M.Y., Oryan, S., Taheri, M., Bastami, K.D. & Zahed, M.A. (2019). Composition and abundance of microplastics in surface sediments and their interaction with sedimentary heavy metals, PAHs and TPH (total petroleum hydrocarbons), Mar. Pollut. Bull., 149, 110655. DOI:10.1016/j.marpolbul.2019.1
  51. Freeman S, Booth A M, Sabbah I, Tiller R, Dierking J, Klun K, Rotter A, Ben-David E, Javidpour J, Angel D L (2020). Between source and sea: The role of wastewater treatment in reducing marine microplastics, Journal of Environmental Management, 266, 110642. DOI: 10.1016/j.jenvman.2020.110642
  52. Gerritse, J., Leslie, H.A., de Tender, C.A. Devriese, L.I., & Vethaak, A.D. (2020). Fragmentation of plastic objects in a laboratory seawater microcosm, Sci. Rep., 10, 10945. DOI:10.1038/s41598-020-67927-1
  53. Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, Fm (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology, 52, pp. 35–41. DOI: 10.1016/j.nbt.2019.04.005
  54. Gies, E.A., LeNoble, J.L., Noel, M., Etemadifar, A., Bishay, F., Hall, E.R. & Ross, P.S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull., 133, 553-561. DOI: 10.1016/j.marpolbul.2018.06.006
  55. Gimiliani, G.T., Fornari, M., Redígolo, M.M., Willian Vega Bustillos, J O., Moledo de Souza Abessa, D., &Faustino Pires, M.A. (2020). Simple and cost-effective method for microplastic quantification in estuarine sediment: A case study of the Santos and São Vicente Estuarine System, Case Studies in Chemical and Environmental Engineering, 2, 100020. https://doi.org/10.1016/j.cscee.2020.100020
  56. Gonzalez-Pleiter, M., Velazquez, D., Edo, C., Carretero, O., Gago, J., Baron-Sola, A., Hernandez, L.E., Yousef, I., Quesada, A., Leganes, F., Rosal, R. & Fernandez-Pi˜nas, F. (2020). Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake, Sci. Total Environ., 722, 137904 DOI:10.1016/j. scitotenv.2020.137904
  57. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. & Rochman, C.M. (2019). Magnetic extraction of microplastics from environmental samples, Environ. Sci. Technol. Letters, 6, pp. 68–72. DOI: 1021/acs.estlett.8b00671
  58. Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. & Wong, M.H. (2020). Source, migration and toxicology of microplastics in soil, Environ. Int. 137, 105263. DOI: 10.1016/j.envint.2019.105263
  59. Han, M., Niu, X.R., Tang, M., Zhang, B.T., Wang, G.Q., Yue, W.F., Kong, X.L. & Zhu, J.Q. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary, Sci. Total Environ., 707, 135601 DOI: 10.1016/j. scitotenv.2019.135601
  60. Han, X., Lu, X. & Vogt, R.D. (2019). An optimized density-based approach for extracting microplastics from soil and sediment samples, Environmental Pollution, 254, 113009. DOI: 10.1016/j.envpol.2019.113009
  61. Harrison, J.P., Sapp, M., Schratzberger, M. & Osborn, A.M. (2011). Interactions between microorganisms and marine microplastics: A call for research, Marine Technology Society Journal, 45(2), pp. 12–20. DOI: 10.4031/MTSJ.45.2.2
  62. He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. (2019). Municipal solid waste (MSW) landfill: a source of microplastics?-Evidence of microplastics in landfill leachate, Water Res., 159, pp. 38-45. DOI: 10.1016/j.watres.2019.04.060
  63. Helcoski, R., Yonkos, L.T., Sanchez, A. & Baldwin, A.H. (2020). Wetland soil microplastics are negatively related to vegetation cover and stemdensity, Environ. Pollut., 256, 113391. DOI: 10.1016/j.envpol.2019.113391
  64. Hermanová, S. & Pumera M. (2022). Micromachines for Microplastics Treatment, ACS Nanosci., 2, pp. 225-232. DOI: 10.1021/acsnanoscienceau.1c00058
  65. Hernandez, E., Nowack, B. & Mitrano, D.M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing, Environ. Sci. Technol., 51, pp. 7036-7046. DOI: 10.1021/acs.est.7b01750
  66. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 46(6), pp. 3060-3075. DOI: 10.1021/es2031505
  67. Hidayaturrahman, H. & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process, Mar. Pollut. Bull., 146, pp. 696–702. DOI: 10.1016/j.marpolbul.2019.06.071
  68. Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H. & Laursen, D. (2011). Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches, Mar. Pollut. Bull., 62(8), pp. 1683–1692. DOI: 10.1016/j.marpo lbul.2011.06.004
  69. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, pp. 127–141. DOI: 10.1016/j.scitotenv.2017.01.190
  70. Howard, G.T., Norton, W.N. & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme, Biodegradation, 23(4), pp. 561–573. DOI: 10.1007/s10532-011-9533-6
  71. Jeon, H.J. & Kim, M.N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene, International Biodeterioration & Biodegradation, 115, pp. 244–249. DOI: 10.1016/J.IBIOD.2016.08.025
  72. Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J. & Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus), Environ. Sci. Technol., 50 (16), pp. 8849-8857. DOI: 10.1021/acs.est.6b01441
  73. Judd, S. (2016). The status of industrial and municipal euent treatment with membrane bioreactor technology, Chem. Eng. J., 305, pp. 37–45. DOI: 10.1016/j.cej.2015.08.141
  74. Kalčíková, G., Alič, B., Skalar, T., Bundschuh,M. & Gotvajn, A.Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater, Chemosphere, 188, pp. 25–31. DOI: 10.1016/j.chemosphere.2017.08.131
  75. Katrivesis, F.K., Karela, A.D., Papadakis, V.G. & Paraskeva, C.A. (2019). Revisiting of coagulation-flocculation processes in the production of potable water, J. Water Process. Eng., 27, 193–204. DOI: 10.1016/j.jwpe.2018.12.007
  76. Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G. & Amara R. (2019). Sources of microplastics pollution in the marine environment: importance of wastewater treatment plant and coastal landfill, Mar. Pollut. Bull., 146 608-618. 10.1016/j.marpolbul.2019.06.066
  77. Kima, S., Sin, A., Nam, H., Park, Y., Lee, H. & Han, C. (2022). Advanced oxidation processes for microplastics degradation: A recent trend, Chemical Engineering Journal Advances, 9, 100213. DOI: 10.1016/j.ceja.2021.100213
  78. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35, pp. 402–417. DOI:10.1016/j.envint.2008.07.009
  79. Kole, P.J., Lohr, A.J., Van Belleghem, F. & Ragas, A. (2017). Wear and tear of tyres: a stealthy source of microplastics in the environment, Int. J. Environ. Res. Public Health, 14, 1265. DOI:10.3390/ijerph14101265
  80. Lares, M., Ncibi, M.C., Sillanpaa, M. & Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Research, 133, pp. 236–246. DOI: 10.1016/ j.watres.2018.01.049
  81. Lee, Y.K., Murphy, K.R. & Hur, J. (2020). Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives, Environ. Sci. Technol., 54, 11905–11914. DOI: 10.1021/acs.est.0c00942
  82. Li, L., Liu, D., Song, K. & Zhou, Y.W. (2020). Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water, Mar. Pollut., Bull., 150, 110724. DOI: 10.1016/j.marpolbul.2019.110724
  83. Li, L., Xu, G. & Yu, H. (2018). Dynamic membrane filtration: formation, filtration, cleaning. and applications, Chem. Eng. Technol., 41, pp. 7–18. DOI: 10.1002/ceat.201700095
  84. Liang, W., Luo, Y., Song, S., Dong, X. & Yu, X. (2013). High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2, Polym. Degrad. Stab,. 98, pp. 1754–1761. DOI: 1016/j.polymdegradstab.2013.05.027
  85. Liu, X., Yuan,W., Di, M., Li, Z. & Wang, J. (2019a). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China, Chem. Eng. J., 362, pp. 176–182. DOI: 10.1016/j.cej.2019.01.033
  86. Liu, F.F., Liu, G.Z., Zhu, Z.L., Wang, S.C. & Zhao, F.F. (2019b). Interactions between microplastics and phthalate esters as affected bymicroplastics characteristics and solution chemistry, Chemosphere, 214, 688–694. Doi: 10.1016/j.chemosphere.2018.09.174
  87. Liu, F., Vianello, A., Vollertsen, J., (2019c). Retention of microplastics in sediments of urban and highway stormwater retention ponds, Environ. Pollut., 255, 113335. DOI: 10.1016/j.envpol.2019.113335
  88. Liu, S.Y., Leung, M.M.L., Fang, J.K.H. & Chua, S.L. (2021). Engineering a microbial ‘trap and release’ mechanism for microplastics removal, Chemical Engineering Journal, 404, 127079. DOI: 10.1016/j.cej.2020.127079
  89. Liu, W.L., Wu, Y., Zhang, S.J., Gao, Y.Q., Jiang, Y., Horn, H. & Li, J. (2020). Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (A2O) reactor with two-zone sedimentation tank treating municipal sewage, Water Research, 178, 115825. DOI: 10.1016/j.watres.2020.115825
  90. Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res,. 155, 255-265. DOI: 10.1016/j.watres.2019.02.028
  91. de Luna, M.D.G., Veciana, M.L., Su, C.C. & Lu, M.C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, J. Hazard. Mater.. 217, pp. 200–207. DOI: 10.1016/j.jhazmat.2012.03.018
  92. Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W. (2019). Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies, J. Clean. Prod., 225, pp. 579–586. DOI: 10.1016/j. jclepro.2019.03.321
  93. Ma, B., Xue, W., Hu, C., (...), Qu, J. & Li, L., (2019b). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chemical Engineering Journal, 359, pp. 159-167. 10.1016/j.cej.2018.11.155
  94. Ma, B., Xue,W., Ding, Y., Hu, C., Li, H. & Qu, J. (2019c). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, J. Environ. Sci., 78, pp. 267–275. DOI: 10.1016/j.jes.2018.10.006
  95. Ma, J., Zhao, J.H., Zhu, Z.L., Li, L.Q. & Yu, F. (2019a). Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride, Environ. Pollut., 254, 113104 DOI: 10.1016/j.envpol.2019.113104
  96. Magni, S., Binelli, A., Pittura, L., Avio, C.G., Della Torre, C., Parenti, C.C. & Gorbi, S., Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant, Sci. Total Environ,. 652, pp. 602–610. DOI: 10.1016/j.scitotenv.2018.10.269
  97. Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. & Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes, Microbial Biotechnology, 12(3), pp. 544–555. DOI: 10.1111/1751-7915.13346
  98. Malankowska, M. Echaide-Gorriz, C. & Coronas, J. (2021). Microplastics in marine environment – sources, classification, and potential remediation by membrane technology – A review, Environ. Sci.: Water Res. Technol., 7, pp. 243-258. DOI: 10.1039/D0EW00802H
  99. Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink P., Papazissimos, D. & Rogers D.L (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., 218, pp. 1045–1054. DOI: 10.1016/j. envpol.2016.08.056
  100. Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S. & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode, J. Hazard. Mater., 399, 123023. DOI: 10.1016/j.jhazmat.2020.123023
  101. Michielssen, M.R., Michielssen, E.R., Ni, J. & Duhaime, M.B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed, Environmental Science: Water Research & Technology, 2(6), pp. 1064–1073, DOI: 10.1039/C6EW00207B
  102. Mintenig, S., Int-Veen, I., Loder, M.G., Primpke, S. & Gerdts, G.,(2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, pp. 365-372. DOI: 10.1016/j.watres.2016.11.015
  103. Mohan, D., Sarswat, A., Ok, Y.S. & Pittman Jr., C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review, Bioresour. Technol., 160, pp. 191–202. DOI: 10.1016/j.biortech.2014.01.120
  104. Moraczewska-Majkut, K., Nocoń, W., Zyguła, M. & Wiśniowska, E. (2020). Quantitative analysis of microplastics in wastewater during selected treatment processes, Desal. Water Treat., 199, pp. 352-361. DOI:10.5004/dwt.2020.26019
  105. Moraczewska-Majkut, K., Nocoń, W. & Łobos-Moysa, E. (2021). The occurrence of microplastics in wastewater and the possibilities of using separation methods to reduce this contamination at the WWTP, Des. Water Treat., 243, pp. 37-43. DOI: 10.5004/dwt.2021.27860
  106. Moussa, D.T., El-Naas, M.H., Nasser, M. & Al-Marri, M.J. (2017). A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186, pp. 24–41. DOI: 10.1016/j.jenvman.2016.10.032
  107. Mrowiec B. (2017). Plastic pollutants in water environment, Environmental Protection and Natural Resources, 28, (74), pp. 51-55. DOI 10.1515/oszn-2017-0030
  108. Mrowiec B. (2018). Plastics in the circular economy (CE), Environmental Protection and Natural Resources, 29, (78), pp. 16-19. DOI 10.2478/oszn-2018-0017
  109. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., 50(11), pp. 5800–5808. DOI: 10.1021/acs.est.5b05416
  110. Murphy, J. (2001). Additives for plastics handbook. Elsevier, Amsterdam, DOI: 10.1016/b978-1-85617 -370-4.x5000 -3
  111. Nakamiya, K., Hashimoto, S., Ito, H., Edmonds, J.S., Yasuhara, A. & Morita, M. (2005). Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria. Journal of Bioscience and Bioengineering, 99(2): 115–119. DOI: 10.1263/JBB.99.115
  112. Napper, I.E. & Thompson, R.C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions, Mar.Pollut. Bull., 112, pp. 39–45. DOI: 1016/j.marpolbul.2016.09.025
  113. Narciso-Ortiz, L., Coreño-Alonso, A., Mendoza-Olivares, D., Lucho-Constantino, C.A. & Lizardi-Jiménez, M.A. (2020). Baseline for plastic and hydrocarbon pollution of rivers, reefs, and sediment on beaches in Veracruz State, México, and a proposal for bioremediation, Environmental Science and Pollution Research, 27(18), pp. 23035–23047. DOI: 10.1007/s11356-020-08831-z
  114. Ngo, P.L., Pramanik, B.K., Shah, K. & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants, Environmental Pollution, 255(2), 113326, DOI: 10.1016/j.envpol.2019.113326
  115. Nizzetto, L., Futter, M. & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol., 50(20), pp. 10777–10779. DOI: 10.1021/acs.est.6b04140
  116. Nocoń, W., Moraczewska-Majkut, K. & Wiśniowska E. (2018). Microplastics in surface water under strong anthropopression, Desal. Water Treat., 134, pp. 174-181. DOI: 10.5004/dwt.2018.22833
  117. Odusanya, S.A., Nkwogu, J.V., Alu, N., Etuk Udo, G.A., Ajao, J.A., Osinkolu, G.A. & Uzomah, A.C. (2013). Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria, Nigerian Food Journal, 31(2), pp. 63–72. DOI: 10.1016/S0189-7241(15)30078-3
  118. Olivatto, G.P., Martins, M.C. T., Montagner, C.C., Henry, T.B. & Carreira, R.S. (2019). Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil, Marine Pollution Bulletin, 139, pp. 157–162. DOI: 10.1016/j.marpolbul.2018.12.042
  119. Oprea, S. & Doroftei, F. (2011). Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum, International Biodeterioration & Biodegradation, 65(3), pp. 533–538. DOI: 10.1016/j.ibiod.2010.09.011
  120. Orr, I.G., Hadar, Y. & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber, Applied Microbiology and Biotechnology, 65(1), pp. 97–104. DOI: 10.1007/s00253-004-1584-8
  121. Osman, M., Satti, S.M., Luqman, A., Hasan, F., Shah, Z. & Shah, A.A. (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil, Journal of Polymers and the Environment, 26(1), pp. 301–310. DOI: 10.1007/s10924-017-0954-0
  122. Östman, M., Björlenius, B., Fick, J. & Tysklind, M. (2019). Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant, Sci. Total Environ., 649, pp. 1117–1123. DOI: 10.1016/j.scitotenv.2018.08.382
  123. Ostrovsky, I., Yacobi, Y. & Koren, N. (2014). Sedimentation Processes, In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. DOI.org/10.1007/978-94-017-8944-8_27
  124. Ouyang, Z., Yang, Y., Zhang, C., Zhu, S., Qin, L., Wang, W., He, D., Zhou, Y., Luo, H. & Qin, F. (2021). Recent Advances in Photocatalytic Degradation of Plastics and Plastic-Derived Chemicals, Journal of Materials Chemistry A, 9 (23), pp. 13402−13441. DOI: 10.1039/D0TA12465F
  125. Paço, A., Duarte, K., da Costa, J.P., Santos, P.S.M., Pereira, R., Pereira, M.E., Freitas, A.C., Duarte, A.C. & Rocha-Santos, T.A.P. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum, Science of the Total Environment, 586, pp. 10–15. DOI: 10.1016/j.scitotenv.2017.02.017
  126. Padervand, M., Lichtfouse E., Robert, D. & Wang C. (2020). Removal of microplastics from the environment. A review, Environmental Chemistry Letters, 18(3), pp. 807-828. DOI: 10.1007/s10311-020-00983-1
  127. Perren, W., Wojtasik, A. & Cai, Q (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), pp. 3357–3364. DOI: 10.1021/acsom ega.7b020 37
  128. Plastics Europe 2022, access 15.09.2022 https://www.plasticseurope.org
  129. Poerio, T., Piacentini, E. & Mazzei, R. (2019). Membrane processes for microplastic removal, Molecules, 24, 4148, DOI:10.3390/molecules24224148
  130. Pohl, A., Tytła, M., Kernert, J., Bodzek M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis, Desalination and Water Treatment, 258, pp. 207–222, DOI:10.5004/dwt.2022.28459
  131. Pramanik, B.K., Pramanik, S.K. & Monira S. (2021). Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes, Chemosphere, 282, 131053. DOI: 10.1016/j.chemosphere.2021.131053
  132. Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C. & Rocha-Santos, T. (2020). Environmental exposure to microplastics: an overview on possible human health effects, Sci. Total Environ., 702, 134455. DOI: 10.1016/j.scitotenv.2019.134455
  133. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T. & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water, Sci. Total Environ., 643, pp.1644-1651. DOI: 10.1016/j.scitotenv.2018.08.102
  134. Qi, K., Cheng, B., Yu, J. & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, pp. 792–820. DOI: 10.1016/j.jallcom.2017.08.142
  135. Rezania, S., Park, J., Din, M.F.M., Taib, S.M., Talaiekhozani, A., Yadav, K.K. & Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies, Mar. Pollut. Bull., 133, pp. 191–208. DOI: 10.1016/j.marpolbul.2018.05.022
  136. Riffat, R., (2013). Fundamentals of wastewater treatment and engineering, Taylor & Francis Group.
  137. Rios, L.M., Moore, C, & Jones P.R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment, Mar, Pollut, Bull., 54(8), pp. 1230–1237. https ://doi.org/10.1016/j.marpolbul.2007.03.022
  138. Rocher, V., Paffoni, C., Goncalves, A., Gu´erin, S., Azimi, S., Gasperi, J., Moilleron, R., Pauss, A., 2012. Municipal wastewater treatment by biofiltration: comparisons of various treatment layouts. Part 1: assessment of carbon and nitrogen removal, Water Sci. Technol., 65, pp. 1705–1712. DOI: 10.2166/wst.2012.105
  139. Rummel, C.D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment, Environ. Sci. Technol. Lett., 4, 258-267. DOI: 0.1021/acs.estlett.7b00164
  140. Saboor F.H.,, Hadian-Ghazvini, S. & Torkashvand M. (2022). Microplastics in Aquatic Environments: Recent Advances in Separation Techniques, Periodica Polytechnica Chemical Engineering, 66(2), pp. 167–181,. DOI: 10.3311/PPch.18930
  141. Sarmah, P. & Rout, J. (2019). Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water, Energy, Ecology & Environment, 4(5), pp. 240–252. DOI: 10.1007/s40974-019-00133-6
  142. Shi, C., Zhang, S., Zhao, J., Ma, J., Wu, H., Sun, H. & Cheng S. (2022b). Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite, Separation and Purification Technology, 288, 120564, DOI: 10.1016/j.seppur.2022.120564
  143. Shi, X., Zhang, X., Gao, W., Zhang, Y. & He, D. (2022a). Removal of microplastics from water by magnetic nano-Fe3O4, Science of The Total Environment, 802, 149838. DOI: 10.1016/j.scitotenv.2021.149838.
  144. Shirasaki, N., Matsushita, T., Matsui, Y. & Marubayashi, T. (2016). Effect of aluminum hydrolyte species on human enterovirus removal from water during the coagulation process. Chem. Eng. J., 284, pp. 786–793. DOI: 10.1016/j.cej.2015.09.045
  145. Siipola, V., Pflugmacher, S., Romar, H., Wendling, L. & Koukkari, P. (2020). Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal, Appl. Sci., 10, 788. DOI: 10.3390/app10030788
  146. Simon, M., Vianello, A. & Vollertsen, J. (2019). Removal of >10 μm microplastic particles from treated wastewater by a disc filter, Water, 11(9), 1935. DOI:10.3390/w11091935
  147. Singla, M., Díaz, J., Broto-Puig, F. & Borros, S. (2020). Sorption and release process of polybrominated diphenyl ethers (PDBEs) from different composition microplastics in aqueous medium: Solubility parameter approach, Environ. Pollut., 262, 114377. DOI: 10.1016/j.envpol.2020.114377
  148. Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polymer Degradation & Stability, 149, pp. 52–68. DOI: 10.1016/J.POLYMDEGRADSTAB.2018.01.018
  149. Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C. & Gieré R. (2018). Tire abrasion as a major source of microplastics in the environment, Aerosol Air Qual. Res., 18, pp. 2014–2028. DOI: 10.4209/aaqr.2018.03.0099
  150. Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A.M. (2020). Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions, Environ. Pollut., 258, 113844. DOI: 10.1016/j. envpol.2019.113844
  151. Sudhakar, M., Doble, M., Murthy, P.S. & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low-and high-density polyethylenes, International Biodeterioration & Biodegradation, 61(3), pp. 203–213. DOI: 10.1016/J.IBIOD.2007.07.011
  152. Sun, J., Dai, X.H., Wang, Q.L., van Loosdrecht, M.C.M. & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Research, 152, pp. 21–37. DOI: 10.1016/j.watres.2018.12.050
  153. Tagg, A., Harrison, J.P., Ju-Nam, Y., Sapp, M., Bradley, E.L., Sinclair, C.J. & Ojeda, J.J. (2017). Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater, Chem. Commun., 53, pp. 372–375. DOI: 10.1039/C6CC08798A
  154. Talvitie, J., Heinonen, M., Paakkonen, J.-P., Vahtera, E., Mikola, A., Setala, O. & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea, Water Sci. Technol., 72(9), pp. 1495-1504. DOI: 10.2166/wst.2015.360
  155. Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. (2017b). Solutions to microplastic pollution: Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, pp. 401–407. DOI:10.1016/j.watres.2017.07.005
  156. Talvitie, J., Mikola, A., Setala, O., Heinonen, M. & Koistinen, A. (2017a). How well is microlitter purified from wastewater? – a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Research, 109, pp. 164–172. DOI:10.1016/j.watres.2016.11.046
  157. Tang, W.C., Li, X., Liu, H.Y., Wu, S.H., Zhou, Q., Du, C., Teng, Q., Zhong, Y.Y. & Yang, C.P. (2020). Sequential vertical flow trickling filter and horizontal flow reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate, Bioresour. Technol. 300, 122634. DOI: 10.1016/j.biortech.2019.122634
  158. Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y. & Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chemical Engineering Journal, 406, 126804. DOI: 10.1016/j.cej.2020.126804
  159. Tian, L., Kolvenbach, B., Corvini, N., Wang, S., Tavanaie, N., Wang, L., Ma, Y., Scheu, S., Corvini, P.F.X. & Ji, R. (2017). Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment, New Biotechnology, 38(B), pp. 101-105. DOI: 10.1016/j.nbt.2016.07.008
  160. Tofa, T.S., Kunjali, K.L., Paul, S. & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett., 17, pp. 1341–1346. DOI: 10.1007/s10311-019-00859-z
  161. Thompson, R.C., Moore, C.J., Vom Saal, F.S. & Swan S.H. (2009). Plastics, the environment and human health: current consensus and future trends, Philosophical Transactions of the Royal Society B, 364, pp. 2153–2166. DOI: 10.1098/rstb.2009.0053
  162. Vimala, P. & Mathew, L. (2016). Biodegradation of polyethylene using Bacillus subtilis, Procedia Technology, 24, pp. 232–239. DOI: 10.1016/j.protcy.2016.05.031
  163. Vuori, L. & Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics 192 ,107246. DOI: 10.1016/j.ecolecon.2021.107246
  164. Wagner, M., Scherer, C., Alvarez‐Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T. Ridriguez‐Mozaz, S., Urbatzka, R., Dick Vethaak, A., Winther‐Nielsen M. & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know, Environ.Sci. Europe, 26, 12. DOI: 10.1186/s12302-014-0012-7
  165. Wang, S.M., Chen, H.Z., Zhou, X.W., Tian, Y.Q., Lin, C., Wang, W.L., Zhou, K.W., Zhang, Y.B. & Lin, H. (2020a). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean, Environ. Pollut., 264, 114125 DOI: 10.1016/j. envpol.2020.114125.
  166. Wang, R., Ji, M., Zhai, H. & Liu, Y. (2020b).Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes, Science of The Total Environment, 737, 140219. DOI: 10.1016/j.scitotenv.2020.140219
  167. Wang, Z., Sedighi, M. & Lea-Langton, A. (2020c). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms, Water Research, 184, 116165. DOI: 10.1016/j.watres.2020.116165
  168. Wang, Q., Hernández-Crespo, C., Santoni, M., Van Hulle, S., Rousseau, D.P. (2020d). Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Sci. Total Environ., 137785. DOI: 10.1016/j.scitotenv.2020.1377
  169. Wang, H., Zhang, Y. & Wang, C. (2019a). Surface modification and selective flotation of waste plastics for effective recycling-a review, Sep. Purif. Technol., 226, pp. 75–94. DOI: 10.1016/j.seppur.2019.05.052
  170. Wang, L., Kaeppler, A., Fischer, D. & Simmchen, J. (2019b). Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter, ACS Appl. Mater. Interfaces., 11, pp. 32937–32944. DOI: 10.1021/acsami.9b06128
  171. Wang, W. & Wang, J. (2018). Investigation of microplastics in aquatic environments: an overview of the methods used, from field sampling to laboratory analysis. Trends Anal. Chem., 108, pp. 195–202. DOI: 10.1016/j.trac.2018.08.026
  172. Wang, W., Ndungu, A.W., Li, Z. & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China, Sci.Total Environ., 575:1369–1374. DOI: 10.1016/j.scito tenv.2016.09.213
  173. Wei, R. & Zimmermann, W. (2017). Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate, Microbial Biotechnology, 10(6), pp. 1302–1307. DOI: 10.1111/1751-7915.12714
  174. Wiśniowska, E., Moraczewska-Majkut, K. & Nocoń, W. (2020). Selected unit processes in microplastics removal from water and wastewater, Desal. Water Treat., 199, pp. 512-520. DOI: 10.5004/dwt.2020.26513
  175. Xia, Y., Xiang, X.M., Dong, K.Y., Gong, Y.Y. & Li, Z.J. (2020). Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging, Science of The Total Environment, 729, 138783. DOI: 10.1016/j.scitotenv.2020.138783
  176. Xiao, K., Lianga, S., Wanga, X., Chena, C. & Huanga, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review, Bioresour. Technol., 271, pp. 473–481. DOI: 10.1016/j.biortech.2018.09.061
  177. Xu, Z., Bai, X. & Ye, Z. (2021). Removal and generation of microplastics in wastewater treatment plants: A review, Journal of Cleaner Production, 291, 125982. DOI: 10.1016/j.jclepro.2021.125982
  178. Yang, L., Li, K., Cui, S., Kang, Y., An, L. & Lei, K. (2019). Removal of microplastics in municipal sewage from China's largest water reclamation plant, Water Research, 155, pp. 175–181. DOI: 10.1016/j.watres.2019.02.046
  179. Yang,Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plasticeating mealworms: Part 2. Role of gut microorganisms, Environmental Science & Technology, 49(20), pp. 12087–12093. DOI: 10.1021/acs.est.5b02663
  180. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades an assimilates poly (ethylene terephthalate). Science, 351, pp. 1196–1199. DOI: 10.1126/science.aad6359
  181. Zettler, E.R., Mincer, T.J. & Amaral-Zettler, L.A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris, Environ. Sci. Technol., 47, pp. 7137-7146. DOI: 10.1021/es401288x
  182. Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C. & Lam, P.K. (2018). Microplastic pollution in China's inland water systems: a review of findings, methods, characteristics, effects, and management, Sci. Total Environ., 630, pp. 1641–1653. DOI: 10.1016/j.scitotenv.2018.02.300
  183. Zhang, X., Chen, J. & Li, J. (2020a). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to contaminants association, Chemosphere. 251, 126360. DOI: 10.1016/j.chemosphere.2020.126360
  184. Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K. & Baker, T. (2020b). Removal efficiency of micro-and nanoplastics (180 nm–125 μm) during drinking water treatment, Sci. Total Environ., 720, 137383. DOI: 10.1016/j.scitotenv.2020.137383
  185. Zhou, G., Wang, Q., Li, J., Li, Q., Xu, H., Ye, Q., Wang, Y., Shu, S. & Zhang, J. (2021). Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism, Science of the Total Environment, 752, 141837. DOI: 10.1016/j.scitotenv.2020.141837
  186. Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L. & Leusch, F.D. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment, Sci. Total Environ., 713, 136356. DOI: 10.1016/j.scitotenv.2019.136356
  187. Ziajahromi, S., Neale, P.A., Rintoul, L. & Leusch, F.D.L. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Research, 112, pp. 93-99. DOI: 10.1016/j.watres.2017.01.042
Przejdź do artykułu

Autorzy i Afiliacje

Michał Bodzek
1
ORCID: ORCID
Alina Pohl
1

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland

Instrukcja dla autorów

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Procedura recenzowania

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Recenzenci

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Polityka antyplagiatowa

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji