Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2014 | No 2

Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

Go to article

Authors and Affiliations

L. Kucharčík
A. Sládek
M. Brůna
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with influence of chrome addition and heat treatment on segregation of iron based phases in the secondary alloy

AlSi7Mg0.3 microstructure by chrome and heat treatment. Iron is the most common and harmful impurity in aluminum casting alloys and

has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic

phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition

some other elements that affect the segregation of intermetallics in less harmful type or by heat treatment. Realization of experiments and

results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of

chrome as iron corrector of iron based phases.

Go to article

Authors and Affiliations

D. Bolibruchová
L. Richtárech
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony.

Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of

antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of

the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The

experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the

loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and

microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion

resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the

different antimony content) with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in

the experiment.

Go to article

Authors and Affiliations

J. Svobodova
J. Cais
V. Weiss
Download PDF Download RIS Download Bibtex

Abstract

The work deals with the influence of change in the filling conditions of the ceramic moulds with plaster binder on the presence of gaseous

porosity and the microstructure of the achieved test castings with graded wall thickness. Castings made of EN AC-44000 alloy, produced

either by gravity casting, or by gravity casting with negative pressure generated around the mould (according to the Vacumetal

technology), or by counter-gravity casting were compared. The results of examinations concerning the density of the produced castings

indicate that no significant change in porosity was found. The increased size of silicon crystals was found for the increased wall

thicknesses due to the slower cooling and solidification of castings.

Go to article

Authors and Affiliations

M. Nadolski
Z. Konopka
M. Łągiewka
A. Zyska
Download PDF Download RIS Download Bibtex

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die

cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the

modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected

on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring

temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values

of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface

roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester

T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge

pressure value of - 0.07 MPa.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through:

using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat

treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver

positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the

alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem.

Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in

water (20 0

C) followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing

plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams

describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its

microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to

expectations produces increased hardness of the material.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

The work presents the investigation results concerning the structure of composite pressure die castings with AlSi11 alloy matrix reinforced

with SiC particles. Examination has been held for composites containing 10 and 20 volume percent of SiC particles. The arrangement of

the reinforcing particles within the matrix has been qualitatively assessed in specimens cut out of the castings. The index of distribution

was determined on the basis of particle count in elementary measuring fields. The tensile strength, the yield point and elongation of the

obtained composite were measured. Composite castings were produced at various values of the piston velocity in the second stage of

injection, diverse intensification pressure values, and various injection gate width values. The regression equation describing the change of

the considered arrangement particles index and mechanical properties were found as a function of the pressure die casting parameters. The

infuence of particle arrangement in composite matrix on mechanical properties these material was examined and the functions of

correlations between values were obtained. The conclusion gives the analysis and the interpretation of the obtained results.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
A. Pasieka
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

The results of experimental study of solid state joining of tungsten heavy alloy (THA) with AlMg3Mn alloy are presented. The aim of

these investigations was to study the mechanism of joining two extremely different materials used for military applications. The

continuous rotary friction welding method was used in the experiment. The parameters of friction welding process i.e. friction load and

friction time in whole studies were changed in the range 10 to 30kN and 0,5 to 10s respectively while forging load and time were constant

and equals 50kN and 5s. The results presented here concerns only a small part whole studies which were described elsewhere. These are

focused on the mechanism of joining which can be adhesive or diffusion controlled. The experiment included macro- and microstructure

observations which were supplemented with SEM investigations. The goal of the last one was to reveal the character of fracture surface

after tensile test and to looking for anticipated diffusion of aluminum into THA matrix. The results showed that joining of THA with

AlMg2Mn alloy has mainly adhesive character, although the diffusion cannot be excluded.

Go to article

Authors and Affiliations

M. Kaczorowski
O. Goroch
A. Krzyńska
Download PDF Download RIS Download Bibtex

Abstract

Contemporary materials engineering requires the use of materials characterised by high mechanical properties, as these precisely

properties determine the choice of material for parts of machinery and equipment. Owing to these properties it is possible to reduce

the weight and, consequently, the consumption of both material and energy. Trying to meet these expectations, the designers are

increasingly looking for solutions in the application of magnesium alloys as materials offering a very beneficial strength-to-weight ratio.

However, besides alloying elements, the properties are to a great extent shaped by the solidification conditions and related structure.

The process of structure formation depends on the choice of casting method forced by the specific properties of casting or by the specific

intended use of final product. The article presents a comparison of AZ91 magnesium alloys processed by different casting technologies.

A short characteristic was offered for materials processed by the traditional semi-continuous casting process, which uses the solidification

rates comprised in a range of 5 - 20⁰C/s, and for materials made in the process of Rapid Solidification, where the solidification rate can

reach 106 ⁰C/s. As a result of the casting process, a feedstock in the form of billets and thin strips was obtained and was subjected next

to the process of plastic forming. The article presents the results of structural analysis of the final product. The mechanical properties

of the ø7 mm extruded rods were also evaluated and compared.

Go to article

Authors and Affiliations

P. Korczak
M. Szymanek
B. Augustyn
D. Kapinos
S. Boczkal
Download PDF Download RIS Download Bibtex

Abstract

Experimental Mg-Al-RE type magnesium alloys for high-pressure die-casting are presented. Alloys based on the commercial AM50

magnesium alloy with 1, 3 and 5 mass % of rare earth elements were fabricated in a foundry and cast in cold chamber die-casting

machines. The obtained experimental casts have good quality surfaces and microstructure consisting of an α(Mg)-phase, Al11RE3,

Al10RE2Mn7 intermetallic compound and small amount of α+γ eutectic and Al2RE phases.

Go to article

Authors and Affiliations

K.N. Braszczyńska-Malik
Download PDF Download RIS Download Bibtex

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical

properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the

inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming

influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of

casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of

the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were

evaluated.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group

of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment

and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method

of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the

technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length.

Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction,

consolidation and hot extrusion.

In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive

stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables

making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable

parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent

fragmentation.

Go to article

Authors and Affiliations

M. Szymaneka
B. Augustyn
D. Kapinos
S. Boczkal
J. Nowak
Download PDF Download RIS Download Bibtex

Abstract

In the course of homogenizing annealing of aluminium alloys being cast continually or semi-continually it appears that chemical

inhomogenity takes off within separate dendritic cells (crystal segregation). It is about a diffusion process that takes place at the

temperature which approaches the liquid temperature of the material. In that process the transition of soluble intermetallic compounds and

eutectic to solid solution occurs and it suppresses crystal segregation significantly [1]. The temperature, homogenization time, the size of

dendritic cells and diffusion length influences homogenizing process. The article explores the optimization of homogenizing process in

terms of its time and homogenizing annealing temperature which influence mechanical properties of AlZn5,5Mg2,5Cu1,5 alloy.

Go to article

Authors and Affiliations

V. Weiss
J. Svobodova
J. Cais
Download PDF Download RIS Download Bibtex

Abstract

The article describes the problem of selection of heat treatment parameters to obtain the required mechanical properties in heat- treated

bronzes. A methodology for the construction of a classification model based on rough set theory is presented. A model of this type allows

the construction of inference rules also in the case when our knowledge of the existing phenomena is incomplete, and this is situation

commonly encountered when new materials enter the market. In the case of new test materials, such as the grade of bronze described in

this article, we still lack full knowledge and the choice of heat treatment parameters is based on a fragmentary knowledge resulting from

experimental studies. The measurement results can be useful in building of a model, this model, however, cannot be deterministic, but can

only approximate the stochastic nature of phenomena. The use of rough set theory allows for efficient inference also in areas that are not

yet fully explored.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
D. Wilk-Kołodziejczyk
Z. Górny
Z. Jančíková
J. David
Download PDF Download RIS Download Bibtex

Abstract

The article presents research results performed on aluminum bronze CuAl10Fe5Ni5 (BA1055) castings used for marine propellers.

Metallographic studies were made on light microscope and a scanning electron microscope to assess quantitatively and qualitatively the

alloy microstructure. It has been shown that the shape, size and distribution of the iron-rich κ−phase precipitates in bronze microstructure

significantly affect its mechanical properties. With an increase in the number of small κ−phase precipitates increases the tensile strength of

castings, while the presence of large globular precipitates improves ductility. Fragmentation and shape of κ−phase precipitates depends on

many factors, particularly on the chemical composition of the alloy, Fe/Ni ratio, cooling rate and casting technology.

Go to article

Authors and Affiliations

J. Łabanowski
T. Olkowski
Download PDF Download RIS Download Bibtex

Abstract

The work presents experiment results from the area of copper casting technology and chosen examples of alloyed copper. At present,

copper casting technology is applied in many branches of industrial manufacturing, especially in the sector of construction,

communications, arms and power engineering. Alloyed copper, containing slight additions of different elements and having special

physio-chemical properties, is used in a special range of applications. Copper technology and alloyed copper analyses have been presented,

these materials being used for cast manufacturing for power engineering. The quality of casts has been assessed, based on their

microstructure analysis, chemical content and the cast properties. During the research, special deoxidizing and modifying agents were

applied for copper and chosen examples of alloyed copper; also exemplary samples were tested with the help of metallographic analysis,

electrical conductivity and gaseous impurities research.

Go to article

Authors and Affiliations

S. Rzadkosz
J. Kozana
M. Piękoś
A. Garbacz-Klempka
M. Kranc
W. Cieślak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30

vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper

was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of

hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic

alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS). Thermal

conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic

particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400

Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles

are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after

binding agent used during preparation of ceramic preforms.

Go to article

Authors and Affiliations

J.W. Kaczmar
K. Granat
A. Kurzawa
E. Grodzka
Download PDF Download RIS Download Bibtex

Abstract

The results presented in this paper are a continuation of the previously published studies. The results of hest treatment of ductile iron with

content 3,66%Si and 3,80% Si were produced. The experimental castings were subjected to austempering process for time 30, 60 and 90

minutes at temperature 300o

C. The mechanical properties of heat treated specimens were studied using tensile testing and hardness

measurement, while microstructures were evaluated with conventional metallographic observations. It was again stated that austempering

of high silicone ferritic matrix ductile iron allowed producing ADI-type cast iron with mechanical properties comparable with standard

ADI.

Go to article

Authors and Affiliations

A. Krzyńska
A. Kochański
Download PDF Download RIS Download Bibtex

Abstract

The work determined the influence of aluminium in the amount from about 0.6% to about 8% on graphitization of cast iron with

relatively high silicon content (3.4%-3.9%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture

and graphitized with ferrosilicon. It was found that the degree of graphitization increases with an increase in aluminium content in cast

iron up to 2.8%, then decreases. Nodular and vermicular graphite precipitates were found after the applied treatment in cast iron containing

aluminium in the amount from about 1.9% to about 8%. The Fe3AlCx carbides, increasing brittleness and deteriorating the machinability of

cast iron, were not found in cast iron containing up to about 6.8% Al. These carbides were revealed only in cast iron containing about 8% Al.

Go to article

Authors and Affiliations

M.S. Soiński
A. Jakubus
P. Kordas
K. Skurka
Download PDF Download RIS Download Bibtex

Abstract

Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the

given technology even for high-pressure casting of castings. Strength, surface quality of achieved castings, and solubility in water become

a decisive criterion. The shape and quality of grain surface particularly of NaCl – cooking salts that can be well applied without anticaking

additives has shown to be an important criterion. Thus the salt cores technology can cover increasingly growing demands for casting

complexity especially for the automobile industry.

Go to article

Authors and Affiliations

P. Jelínek
E. Adámková
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a research on usability of an innovative reclamation process of microwave-hardened moulding sands containing

water-glass, combined with activation of binder. After each subsequent stage of reclamation, quality of the reclaimed material was

determined on the grounds of measurements of permeability and results of screen analysis. The reclaimed material was next used again to

prepare new moulding sand. The sandmix based on high-silica sand prepared with water-glass grade 145, was subject to the following

cyclical treatment operations: mixing components, consolidation, microwave hardening, cooling, heating the mould up to 800 °C, cooling

to ambient temperature, mechanical reclamation dry and wet. It was found that the used-up and reclaimed sandmix containing water-glass

is susceptible to the applied activation process of thermally reacted film of binder and, in addition, it maintains good quality and

technological properties of high-silica base. Observations of surfaces of reclaimed high-silica grains with activated film of reacted

inorganic binder were carried-out using a scanning microscope. Thanks to properly selected reclamation parameters, the high-silica base

can be reused even five times, thus reducing demand for fresh aggregate and inorganic binder.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on influence of electrical and physico-chemical properties of materials being parts of

multicomponent and multimaterial systems used in foundry practice on efficiency and effectiveness of microwave heating. Effectiveness

of the process was evaluated on the grounds of analysis of interaction between selected parameters of permittivity and loss factor, as well

as collective index of energy absorbed, reflected and transmitted by these materials. In the examinations used was a stand of waveguide

resonance cavity for determining electrical properties and a stand of microwave slot line for determining balance of microwave power

emitted into selected materials. The examinations have brought closer the possibility of forecasting the behaviour of multimaterial systems

like e.g. model, moulding sand or moulding box in microwave field on the grounds of various electrical and physico-chemical properties.

On the grounds of analysis of the results, possible was selecting a group of materials designed for building foundry instrumentation to be

effectively used in electromagnetic field.

Go to article

Authors and Affiliations

M. Stachowicz
B. Opyd
K. Granat
K. Markuszewska
Download PDF Download RIS Download Bibtex

Abstract

The present article deals with the possibility of using the reverse engineering method for the production of prototype molds by Patternless

process technology. Article describes method how to obtain virtual model by using a 3D scanner. Article also explains principle of the

Patternless process technology, which is based on the milling mold cavity using CNC machining equipment. The aim of the research is the

use of advanced technologies that speed up and facilitate the process of production prototype mold. The practical result of the presented

experiment is bronze casting, which serves as a foot rest bracket on historic bike.

Go to article

Authors and Affiliations

E. Krivoš
R. Pastirčák
P. Lehocký
Download PDF Download RIS Download Bibtex

Abstract

Contribution gives an overview of knowledge about the method of centrifugal casting with orientate on Tekcast system. Company Tekcast

Industries has developed a device for centrifugal casting, extending the area of production of castings or prototyping of metal or plastic.

Materials suitable for the centrifugal casting with flexible operating parameters may include non-ferrous metal alloy based on zinc or

aluminum or non-metallic materials such as polyester resins, polyurethane resins, epoxy resins, waxes and the like. The casting process is

particularly suitable for a wide range of commercial castings and decorative objects.

Go to article

Authors and Affiliations

H. Mäsiar
L. Repka
P. Lipták
O. Híreš
Download PDF Download RIS Download Bibtex

Abstract

Bentonite is clay rock, which is created by decomposition of vulcanic glass. It is formed from mixture of clay minerals of smectite group,

mainly montmorillonite, beidellite and nontronite. Its typical characteristics is, that when in contact with water, it intensively swells. First

who used this term was W.C. Knight in 1887. The rock had been named after town Fort Benton in American state Montana. For its

interesting technological properties and whiteness has wide technological use. Bentonite is selectively mined and according to its final use

separately modified, which results in high quality product with specific parameters.

In the beginning of 21st century belong bentonite moulding mixtures in foundry to always perspective. Mainly increased ratio of ductile

cast iron castings production cannot be ensured without the need of quality bentonite. Great area of scope remains to further research of

moulding materials, which return also to bentonite producers.

Go to article

Authors and Affiliations

I. Vasková
M. Hrubovčáková

Instructions for authors

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Publication Ethics Policy


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Peer-review Procedure


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Reviewers

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


This page uses 'cookies'. Learn more