Glottal waveform models have long been employed in improving the quality of speech synthesis. This paper presents a new approach for modeling the glottal flow. The model is based on three control volumes that strike a one-mass and two-springs system sequentially and generate a glottal pulse. The first, second and third control volumes represent the opening, closing and closed phases of the vocal folds, respectively. The masses of the three control volumes and the size of the first one are the four parameters that define the shape, pitch and amplitude of the glottal pulse. The model may be viewed as parametric approach governed by second order differential equations rather than analytical functions and is very flexible for designing a glottal pulse. The glottal pulse generated by the present model, when compared with those generated by Rosenberg, LF and mucosal wave propagation models demonstrates that it appropriately represents the opening, closing and closed phases of the vocal fold oscillation. This leads to the validity of our model. Numerical solution of the present model has been found to be very efficient as compared to its analytical solution and two other well-known parametric models Rosenberg++ and LF. The accuracy of the numerical solution has been illustrated with the help of analytical solution. It has been observed that the accuracy improves by increasing the size of the first control volume and may decrease insignificantly with increase in the mass of any of the control volumes. Two experiments with the present model support its successful implementation as a voice source in speech synthesis. Thus our model renders itself as an efficient, accurate and realistic choice as a voice source to be employed in real-time speech production.
The article presents results of our own research regarding acoustic properties of 110 classrooms in five typical primary schools in Warsaw. The target of the research was to assess the classrooms using established criteria. These criteria include the reverberation time and the speech transmission index. The research has shown a large diversity of acoustic properties of classrooms within each of the schools and between the schools, resulting from the classroom equipment and the school building construction. In addition, the assessment has indicated that classrooms in schools researched do not meet the established acoustic criteria (reverberation time and speech transmission index). Because the classroom equipment is different for younger forms (integrated teaching) and for older forms (subject teaching), the results have been analyzed separately for rooms for younger forms (0-III) and for rooms for older forms (IV-VI). Synthetic results prove the advisability of such division. Correlation analysis has been conducted for the speech transmission index STI and reverberation time Tmf, as well as for the speech transmission index STI and the suggested reverberation time Twf defined in a similar manner as Tmf, but in a wider frequency range. The correlation between the speech transmission index STI and Twf is higher than that between the STI index and Tmf. The reverberation time Twf can therefore be used for a more precise assessment of acoustic properties of interiors with regard to verbal communication than Tmf. In addition, the paper presents estimated analysis results of the influence of selected classroom equipment (carpets) on its acoustic properties.
In this paper, the adaptive control based on symbolic solution of Diophantine equation is used to suppress circular plate vibrations. It is assumed that the system to be regulated is unknown. The plate is excited by a uniform force over the bottom surface generated by a loudspeaker. The axially-symmetrical vibrations of the plate are measured by the application of the strain sensors located along the plate radius, and two centrally placed piezoceramic discs are used to cancel the plate vibrations. The adaptive control scheme presented in this work has the ability to calculate the error sensor signals, to compute the control effort and to apply it to the actuator within one sampling period. For precise identification of system model the regularized RLS algorithm has been applied. Self-tuning controller of RST type, derived for the assumed system model of the 4th order is used to suppress the plate vibration. Some numerical examples illustrating the improvement gained by incorporating adaptive control are demonstrated.
Acoustic parameters were analysed in nine auditoria and multi-purpose conference rooms in the University of Extremadura. Parameters related to the reverberation time, background noise, and intelligibility (both physical measurements of different parameters [Definition (D-50) and STI] and speech tests used to study the subjective response of listeners) were studied. The measurements were compared with some recommendations from the literature and, considering that speech was the main use of the studied rooms, with the intelligibility results. Some different recommendations for reverberation times taken from the literature were analysed. The intelligibility results obtained from the measurements were also compared with the intelligibility results that were determined by the speech tests.
A method for precise sound sources detection and localization in interiors is presented. Acoustic vector sensors, which provide multichannel output signals of acoustic pressure and particle velocity were employed. Methods for detecting acoustic events are introduced. The algorithm for localizing sound events in the audience is presented. The system set up in a lecture hall, which serves as a demonstrator of the proposed technology, is described. The accurracy of the proposed method is evaluated by the described measurement results. The analysis of the results is followed by conclusions pertaining the usability of the proposed system. The concept of the multimodal audio-visual detection of events in the audience is also introduced.
In this study we investigate the appearance of combination tones in violins. Most authors in recent times have emphasised that combination tones occur inside the ear exclusively (intra-aural). This assumption will be subjected to scrutiny based on evidence found in an empirical study in which combination tones were measured outside the ear (extra-aural).
Measurements were performed in which a violinist played two tones of a particular musical interval simultaneously. This was recorded and subsequently analysed using a Fourier Transformation. In addition to the partial tones of the primary interval, the resulting spectrum showed frequencies corresponding to combination tones. Similar measurements on the viola and violoncello also revealed the existence of extra-aural combination tones. Such frequencies may influence the timbre of simultaneous intervals played on string instruments. In another experiment the violin was excited using an electrodynamic mini-shaker with the aim of localising the origin of extra-aural combination tones. A newly devised tone matrix was used as a theoretical approach which computes all potential combination tones that may occur between any pair of partial tones. The detailed analysis of musical intervals by both the frequency spectrum and the tone matrix shows characteristic mirror and point symmetries in the partial tone structure. The discussion focuses mainly on the audibility of extra-aural combination tones and on ‘the combination tone 1’. This research opens up new perspectives and questions relevant for interpreters, composers, violin makers and violin acousticians.
The condition of the conical surface of the needle and seat in a fuel atomizer can be assessed by using the acoustic emission method. The assessment of this conical tribological pair can be performed by up-to-date measurement methods that substantially enhance the quality of evaluating the technical condition of conical surfaces of the atomizer needle and seat.
On-load tap changers (OLTC) are some of the main transformer elements that make voltage adjustment in a power network possible. Their failures often cause shutdowns of distribution transformers. The paper presents research work aimed at the assessment of the technical condition of OLTCs by the acoustic emission method (EA). This method makes the OLTC diagnosis possible without the need of disconnecting the transformer from the system. The measurements were taken in laboratory conditions. The influence on the operation non-concurrence of the power tap changer contacts on the AE registered signals has been investigated. The signals registered were subjected to analyses in the time and time-frequency domains. The result analysis in the time domain was carried out using the Hilbert transform and calculating characteristic times for the particular runs. A short-time Fourier transform was used for the assessment of results in the time-frequency domain.
The non linearities in the motor of an electrodynamic loudspeaker are still a discussed topic. This paper studies the influence of the force factor variation with the coil displacement on the harmonic and inter-modulation distortions. The real variation is described at least by a linear and a quadratic term. The effect of each term is studied separately, as they don't influence the same kind of frequencies, harmonics or inter-modulation. Both terms considered together result in enhanced effects. The dissymmetry of the Bl variation with regard to the coil centered position has also peculiar effects. This paper presents the method developed to calculate the power of each harmonic and inter-modulation frequency. This allows to compare the obtained values and thus the induced nonlinearities.
Comb transducers are applied in ultrasonic testing for generation of Rayleigh or Lamb waves by scattering of the incident bulk waves onto surface waves at the periodic comb-substrate interface. Hence the transduction efficiency, although rarely discussed in literature, is an important factor for applications determining the quality of the measured ultrasonic signals. This paper presents the full-wave theory of comb transducers concluded by evaluation of their efficiency for a couple of examples of standard and certain novel configurations.
In this paper, the computer modelling application based on the modal expansion method is developed to study the influence of a sound source location on a steady-state response of coupled rooms. In the research, an eigenvalue problem is solved numerically for a room system consisting of two rectangular spaces connected to one another. A numerical procedure enables the computation of shape and frequency of eigenmodes, and allows one to predict the potential and kinetic energy densities in a steady-state. In the first stage, a frequency room response for several source positions is investigated, demonstrating large deformations of this response for strong and weak modal excitations. Next, a particular attention is given to studying how the changes in a source position influence the room response when a source frequency is tuned to a resonant frequency of a strongly localized mode.
The paper presents the theoretical and experimental study of synthetic transmit aperture (STA) method combined with Golay coded transmission for medical ultrasound imaging applications. The transmission of long waveforms characterized by a particular autocorrelation function allows to increase the total energy of the transmitted signal without increasing the peak pressure. It can also improve signal-to-noise ratio and increase the visualization depth maintaining the ultrasound image resolution.
In the work the 128-element linear transducer array with 0.3 mm pitch excited by the 8 and 16-bits Golay coded sequences as well as a one cycle at nominal frequencies 4 MHz were used. The comparison of 2D ultrasound images of the tissue mimicking phantoms is presented to demonstrate the benefits of coded transmission. The image reconstruction was performed using synthetic STA algorithm with transmit and receive signals correction based on a single element directivity function.
The International Congress on Ultrasonics'2011 held in Gda?sk, Poland was the third one (after Viena'2007, Austria and Santiago'2009, Chile) over the world meeting of the ultrasonics community, continuing a long tradition of Ultrasonics International Conferences (organized every second year since 1963 to 2005), as well as World Congresses on Ultrasonics (organized every second year since 1995 to 2005). Last 6 years experience of foundation of ICU congresses have shown a real progress in global integration process of the ultrasonics community and provided an excellent platform for the professional knowledge, exchange among scientists and engineers from academic and industrial centers as well as from other institutions and places of ultrasonics studies and applications.
Ultrasonics as multi-disciplinary field covers a great number of topics from fundamental physical aspects through chemical, biological, medical, material inspections and others branches to many applications. All contributions of topics of the field of ultrasonics were presented during the ICU'2011 in Gdańsk, and the meeting provided a valuable and unique opportunity for participants to exchange their achievements and experience as well as to enlarge their international contacts on the field.
This article presents results of investigations of the angle of directional hearing acuity (ADHA) as a measure of the spatial hearing ability with a special emphasis on people with hearing impairments. A modified method proposed by Zakrzewski has been used - ADHA values have been determined for 8 azimuths in the horizontal plane at the height of the listeners' head. The two-alternative-forced-choice method (2AFC), based on a new system of listeners' responses (left - right instead of no difference - difference in location of sound sources) was the procedure used in the experiment. Investigations were carried out for two groups of subjects: normal hearing people (9 persons) and hearing impaired people (sensorineural hearing loss and tinnitus - 9 persons). In the experiment different acoustic signals were used: sinusoidal signals (pure tones), 1/3 octave noise, amplitude modulated 1/3 octave noise, CCITT speech and traffic noises and signals corresponding to personal character of tinnitus for individual subjects. The results obtained in the investigations showed, in general, a better localization of the sound source for noise type signals than those for tonal signals. Inessential differences exist in ADHA values for particular signals between the two groups of subjects. On the other hand, significant differences for tinnitus signals and traffic noise signals were stated. A new system of listeners' responses was used and appeared efficient (less dispersion of results compared to the standard system).
Recently, there has been research on high frequency dissipative mufflers. However, research on shape optimization of hybrid mufflers that reduce broadband noise within a constrained space is sparse. In this paper, a hybrid muffler composed of a dissipative muffler and a reactive muffler within a constrained space is assessed. Using the eigenvalues and eigenfunctions, a coupling wave equation for the perforated dissipative chamber is simplified into a four-pole matrix form. To efficiently find the optimal shape within a constrained space, a four-pole matrix system used to evaluate the acoustical performance of the sound transmission loss (STL) is evaluated using a genetic algorithm (GA).
A numerical case for eliminating a broadband venting noise is also introduced. To verify the reliability of a GA optimization, optimal noise abatements for two pure tones (500 Hz and 800 Hz) are exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models has been checked using experimental data. Results indicate that the maximal STL is precisely located at the desired target tone. The optimal result of case studies for eliminating broadband noise also reveals that the overall sound power level (SWL) of the hybrid muffler can be reduced from 138.9 dB(A) to 84.5 dB(A), which is superior to other mufflers (a one-chamber dissipative and a one-chamber reactive muffler). Consequently, a successful approach used for the optimal design of the hybrid mufflers within a constrained space has been demonstrated.
In many physical experiments, linear frequency modulated (LFM) signals are widely used to probe objects in different environments, from outer-space to underwater. These signals allow a significant improvement in measurement resolution, even when the observation distance is great. For example, using LFM probe signals in underwater investigations enables discovery of even small objects covered by bottom sediments.
Recognition of LFM (chirp) signals depends on their compression based on matched filtering. This work presents two simple solutions to improve the resolution of the short chirp signals recognition. These methods are effective only if synchronization between the signal and matched filter (MF) is obtained. This work describes both the aforementioned methods and a method of minimizing the effects of the lack of synchronization.
The proposed matched filtering method, with the use of n parallel MFs and other techniques, allows only one sample to be obtained in the main lobe and to accurately locate its position in the appropriate sampling period Ts with accuracy Ts/n. These approaches are appropriate for use in probe signal processing.
This paper provides an overview of the effects of timing jitter in audio sampling analog-to-digital converters (ADCs), i.e. PCM (conventional or Nyquist sampling) ADCs and sigma-delta (ΣΔ) ADCs. Jitter in a digital audio is often defined as short-term fluctuations of the sampling instants of a digital signal from their ideal positions in time. The influence of the jitter increases particularly with the improvements in both resolution and sampling rate of today's audio ADCs. At higher frequencies of the input signals the sampling jitter becomes a dominant factor in limiting the ADCs performance in terms of signal-to-noise ratio (SNR) and dynamic range (DR).
The attenuating properties of biological tissue are of great importance in ultrasonic medical imaging. Investigations performed in vitro and in vivo showed the correlation between pathological changes in the tissue and variation of the attenuation coefficient. In order to estimate the attenuation we have used the downshift of mean frequency (fm) of the interrogating ultrasonic pulse propagating in the medium. To determine the fm along the propagation path we have applied the fm estimator (I/Q algorithm adopted from the Doppler mean frequency estimation technique). The mean-frequency shift trend was calculated using Single Spectrum Analysis. Next, the trends were converted into attenuation coefficient distributions and finally the parametric images were computed. The RF data were collected in simulations and experiments applying the synthetic aperture (SA) transmit-receiving scheme. In measurements the ultrasonic scanner enabling a full control of the transmission and reception was used. The resolution and accuracy of the method was verified using tissue mimicking phantom with uniform echogenicity but varying attenuation coefficient.
Sound diffusers, in particular those based on changes in the phase of the reflected wave (Schroeder diffusers), have recently gained greatly in popularity in acoustics as an effective means to eliminate defects and improve the acoustic performance of interiors. This paper draws attention to a possibility of shaping acoustic parameters of sound diffusers and fundamental errors made in applying diffusers. Also, an often neglected issue of sound absorption by diffusers has been tackled. The presented results of laboratory measurements indicate a great significance of the diffusers' rigidity and geometry on their absorption coefficient at low frequencies. The effect of arrangement of elements on the diffusion coefficient was analysed for two types of elements based on the prime number N = 7.
Many therapeutic applications of pulsed focused ultrasound are based on heating of detected lesions which may be localized in tissues at different depths under the skin. In order to concentrate the acoustic energy inside tissues at desired depths a new approach using a planar multi-element annular array transducer with an electronically adjusted time-delay of excitation of its elements, was proposed. The 7-elements annular array transducer with 2.4 MHz center operating frequency and 20 mm outer diameter was produced. All its elements (central disc and 6 rings) had the same radiating area. The main purpose of this study was to investigate thermal fields induced in bovine liver in vitro by pulsed focused ultrasonic beams with various acoustic properties and electronically steered focal plane generated from the annular array transducer used. The measurements were performed for the radiating beams with the 20 mm focal depth. In order to maximize nonlinear effects introducing the important local temperature rise, the measurements have been performed in two-layer media comprising of a water layer, whose thickness was specific for the transducer used and equal to 13 mm, and the second layer of a bovine liver with a thickness of 20 mm. The thickness of the water layer was determined numerically as the axial distance where the amplitude of the second harmonics started to increase rapidly. The measurements of the temperature rise versus time were performed using a thermocouple placed inside the liver at the focus of the beam. The temperature rise induced in the bovine liver in vitro by beams with the average acoustic power of 1W, 2 W and 3 W and duty cycle of 1/5, 1/15 and 1/30, respectively, have been measured. For each beam used the exposure time needed for the local tissue heating to the temperature of 43°C (used in therapies based on ultrasonic enhancement of drug delivery or in therapies involving stimulation of immune system by enhancement of the heat shock proteins expression) and to the temperature of 56°C (used in HIFU therapies) was determined. Two sets of measurements were done for each beam considered. First, the thermocouple measurement of the temperature rise was done and next, the real-time monitoring of dynamics of growth of the necrosis area by using ultrasonic imaging technique, while the sample was exposed to the same acoustic beam. It was found that the necrosis area becomes visible in the ultrasonic image only for beams with the average acoustic power of 3 W, although after cutting the sample the thermo ablated area was visible with the naked eye even for the beams with lower acoustic power. The quantitative analysis of the obtained results allowed to determine the exposure time needed to get the necrosis area visible in the ultrasonic image.
Recently a new technology of piezoelectric transducers based on PZT thick film has been developed as a response to a call for devices working at higher frequencies suitable for production in large numbers at low cost. Eight PZT thick film based focused transducers with resonant frequency close to 40 MHz were fabricated and experimentally investigated. The PZT thick films were deposited on acoustically engineered ceramic substrates by pad printing. Considering high frequency and non-linear propagation it has been decided to evaluate the axial pressure field emitted (and reflected by thick metal plate) by each of concave transducer differing in radius of curvature - 11 mm, 12 mm, 15 mm, 16 mm.
All transducers were activated using AVTEC AVG-3A-PS transmitter and Ritec diplexer connected directly to Agilent 54641D oscilloscope. As anticipated, in all cases the focal distance was up to 10% closer to the transducer face than the one related to the curvature radius. Axial pressure distributions were also compared to the calculated ones (with the experimentally determined boundary conditions) using the angular spectrum method including nonlinear propagation in water. The computed results are in a very good agreement with the experimental ones. The transducers were excited with Golay coded sequences at 35-40 MHz. Introducing the coded excitation allowed replacing the short-burst transmission at 20 MHz with the same peak amplitude pressure, but with almost double center frequency, resulting in considerably better axial resolution. The thick films exhibited at least 30% bandwidth broadening comparing to the standard PZ 27 transducer, resulting in an increase in matching filtering output by a factor of 1.4-1.5 and finally resulting in a SNR gain of the same order.
The application of modern scientific methods and measuring techniques can extend the empirical knowledge used for centuries by violinmakers for making and adjusting the sound of violins, violas, and cellos.
Accessories such as strings and tailpieces have been studied recently with respect to style and historical coherence, after having been somehow neglected by researchers in the past. These fittings have played an important part in the history of these instruments, but have largely disappeared as they have been modernised. However, the mechanics of these accessories contribute significantly to sound production in ways that have changed over time with different musical aesthetics and in different technical contexts. There is a need to further elucidate the function and musical contribution of strings and tailpieces.
With this research we are trying to understand the modifications of the cello's sound as a consequence of tailpiece characteristics (shape of the tailpiece and types of attachments). Modal analysis was used to first investigate the vibration modes of the tailpiece when mounted on a non-reactive rig and then when mounted on a real cello where it can interact with the modes of the instrument's corpus. A preliminary study of the effect of the tailpiece cord length will be presented.