The main objective of the research presented in this paper is to enhance driver-passengers comfort of a vehicle that in turn leads to better vehicle safety and stability. The focus was put on studying the interior vibration and noise contributions originated from tire-road and engine-transmission subsystems, due to their significant impact on the dynamic performance of the vehicle. The noise and vibration measurements were recorded at the driver’s head position and on the driver legs room. Furthermore, the influence of different tire types and road surface textures on the vehicle interior noise and vibration were considered. The results indicate that the widely used conventional engine mounts and tires in commercial vehicles cannot fulfill the conflicting requirements for the best isolation concerning both road surface and engine-transmission induced excitations. The values of driver’s head position sound pressure level and floor vibration acceleration broadband averages originate for engine-transmission are lower than that for tire-road interaction. Furthermore, the values of RMS, crest factor, kurtosis and IRI for the vehicle waveform were estimated for vehicle speeds, tire types and road surface textures. Moreover, the percentage contribution for both interior noise and vibration originated from tire-road interaction is higher than the one from vehicle engine-transmission system in all the vehicle speed range, tire type and road surface texture considered.
This paper presents the research studies carried out on the application of lattice Boltzmann method (LBM) to computational aeroacoustics (CAA). The Navier-Stokes equation-based solver faces the difficulty of computational efficiency when it has to satisfy the high-order of accuracy and spectral resolution. LBM shows its capabilities in direct and indirect noise computations with superior space-time resolution. The combination of LBM with turbulence models also work very well for practical engineering machinery noise. The hybrid LBM decouples the discretization of physical space from the discretization of moment space, resulting in flexible mesh and adjustable time-marching. Moreover, new solving strategies and acoustic models are developed to further promote the application of LBM to CAA.
The radiation of sound waves from partially lined duct is treated by using the mode-matching method in conjunction with the Wiener-Hopf technique. The solution is obtained by modification of the Wiener-Hopf technique and involves an infinite series of unknowns which are determined from an infinite system of linear algebraic equations. Numerical solution of this system is obtained for various values of the problem parameters, whereby the effects of these parameters on the sound diffraction are studied. A perfect agreement is observed when the results of radiated field are compared numerically with a similar work existing in the literature.
The head-related transfer function (HRTF) is dependent on the position of the sound source (both direction and distance) and is also affected by individual anatomical parameters. Individualized HRTFs have been shown to affect the perception of sound direction, but have not been considered in distance perception. This work aims to discover, by means of psychoacoustic experiments for a virtual reproduction system through a pair of in-ear headphones, the effect of individualized HRTF on auditory distance perception for a nearby sound source. The individualized HRTFs of six subjects and the non-individualized HRTFs of a mannequin at seven distances between 0.2 and 1.0 m and five lateral azimuths between 45X and 135X in the horizontal plane were processed with white noise to generate binaural signals. Further, the individualized and non-individualized HRTFs were used in the auditory distance perception experiments. Results of distance perception show that the variance of distance perception results among subjects is significant, the reason could be the stimuli are lack of dynamic cue and early reflections, or the auditory difference of distance perception among subjects. However, via the analyses of mean slope of perceptual distance and correlation between the perceptual and real distance, we find that the individualized HRTF cue has insignificant influence on distance perception.
This paper presents an approximate analytical model for estimating the transmission loss (TL) of a finite rectangular plate in the low frequency range, which is based on the modal summation approach (MSA) taking into account the modal radiation impedance and fluid loading. The mode-dependent radiation resistance is calculated using the Rayleigh integral. The fluid loading is taken into account through the natural frequency modified by the added mass. The results are compared with the ones of Statistical Energy Analysis (SEA) coupled with FEM and FEM coupled with BEM. In addition, the effects of the various vibration modes and the fluid loading on TL, and a way for reducing the calculation time are discussed.
One of the most important issues that power companies face when trying to reduce time and cost maintenance is condition monitoring. In electricity market worldwide, a significant amount of electrical energy is produced by synchronous machines. One type of these machines is brushless synchronous generators in which the rectifier bridge is mounted on rotating shafts. Since bridge terminals are not accessible in this type of generators, it is difficult to detect the possible faults on the rectifier bridge. Therefore, in this paper, a method is proposed to facilitate the rectifier fault detection. The proposed method is then evaluated by applying two conventional kinds of faults on rectifier bridges including one diode open-circuit and two diode open-circuit (one phase open-circuit of the armature winding in the auxiliary generator in experimental set). To extract suitable features for fault detection, the wavelet transform has been used on recorded audio signals. For classifying faulty and healthy states, K-Nearest Neighbours (KNN) supervised classification method was used. The results show a good accuracy of the proposed method.
The human voice is one of the basic means of communication, thanks to which one also can easily convey the emotional state. This paper presents experiments on emotion recognition in human speech based on the fundamental frequency. AGH Emotional Speech Corpus was used. This database consists of audio samples of seven emotions acted by 12 different speakers (6 female and 6 male). We explored phrases of all the emotions – all together and in various combinations. Fast Fourier Transformation and magnitude spectrum analysis were applied to extract the fundamental tone out of the speech audio samples. After extraction of several statistical features of the fundamental frequency, we studied if they carry information on the emotional state of the speaker applying different AI methods. Analysis of the outcome data was conducted with classifiers: K-Nearest Neighbours with local induction, Random Forest, Bagging, JRip, and Random Subspace Method from algorithms collection for data mining WEKA. The results prove that the fundamental frequency is a prospective choice for further experiments.
A vocal tract model based on a digital waveguide is presented in which the vocal tract has been decomposed into uniform cylindrical segments of variable lengths. We present a model for the real-time numerical solution of the digital waveguide equations in a uniform tube with the temporally varying cross section. In the current work, the uniform cylindrical segments of the vocal tract may have their different lengths, the time taken by the sound wave to propagate through a cylindrical segment in an axial direction may not be an integer multiple of each other. In such a case, the delay in an axial direction is necessarily a fractional delay. For the approximation of fractional-delay filters, Lagrange interpolation is used in the current model. Variable length of the individual segment of the vocal tract enables the model to produce realistic results. These results are validated with accurate benchmark model. The proposed model has been devised to elongate or shorten any arbitrary cylindrical segment by a suitable scaling factor. This model has a single algorithm and there is no need to make section of segments for elongation or shortening of the intermediate segments. The proposed model is about 23% more efficient than the previous model.
The paper presents results of numerical calculations and experimental data on the directional pattern of two 38-element parametric arrays composed of ultrasound sources. Two types of antenna arrays are considered, namely with parallel and coaxial connections of ultrasonic transducers (elements). The results of selecting and functional testing of unit elements are described in this paper. It is found that in the coaxial element connection of the antenna array, the level of side lobes is higher than that in the parallel element connection.
In this study, free and forced vibration responses of carbon nanotube reinforced uniform and tapered composite beams are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced uniform and tapered composite beams are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available in literature. Various parametric studies are also performed to investigate the effect of aspect ratio, percentage of CNT content, ply orientation, and boundary conditions on natural frequencies and mode shapes of a CNT reinforced composite beam. It was observed that the addition of carbon nanotube in fiber reinforced polymer composite (FRP) beam enhances the stiffness of the structure which consequently increases the natural frequencies and alters the mode shapes.
Excitation of the entropy mode in the field of intense sound, that is, acoustic heating, is theoretically considered in this work. The dynamic equation for an excess density which specifies the entropy mode, has been obtained by means of the method of projections. It takes the form of the diffusion equation with an acoustic driving force which is quadratically nonlinear in the leading order. The diffusion coefficient is proportional to the thermal conduction, and the acoustic force is proportional to the total attenuation. Theoretical description of instantaneous heating allows to take into account aperiodic and impulsive sounds. Acoustic heating in a half-space and in a planar resonator is discussed. The aim of this study is to evaluate acoustic heating and determine the contribution of thermal conduction and mechanical viscosity in different boundary problems. The conclusions are drawn for the Dirichlet and Neumann boundary conditions. The instantaneous dynamic equation for variations in temperature, which specifies the entropy mode, is solved analytically for some types of acoustic exciters. The results show variation in temperature as a function of time and distance from the boundary for different boundary conditions.
An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension σ and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.
Image-guided High Intensity Focused Ultrasound (HIFU) technique is dynamically developing technology for treating solid tumors due to its non-invasive nature. Before a HIFU ablation system is ready for use, the exposure parameters of the HIFU beam capable of destroying the treated tissue without damaging the surrounding tissues should be selected to ensure the safety of therapy. The purpose of this work was to select the threshold acoustic power as well as the step and rate of movement of the HIFU beam, generated by a transducer intended to be used in the HIFU ablation system being developed, by using an array of thermocouples and numerical simulations. For experiments a bowl-shaped 64-mm, 1.05 MHz HIFU transducer with a 62.6 mm focal length (f-number 0.98) generated pulsed waves propagating in two-layer media: water/ex vivo pork loin tissue (50 mm/40 mm) was used. To determine a threshold power of the HIFU beam capable of creating the necrotic lesion in a small volume within the tested tissue during less than 3 s each tissue sample was sonicated by multiple parallel HIFU beams of different acoustic power focused at a depth of 12.6 mm below the tissue surface. Location of the maximum heating as well as the relaxation time of the tested tissue were determined from temperature variations recorded during and after sonication by five thermo-couples placed along the acoustic axis of each HIFU beam as well as from numerical simulations. The obtained results enabled to assess the location of each necrotic lesion as well as to determine the step and rate of the HIFU beam movement. The location and extent of the necrotic lesions created was verified using ultrasound images of tissue after sonication and visual inspection after cutting the samples. The threshold acoustic power of the HIFU beam capable of creating the local necrotic lesion in the tested tissue within 3 s without damaging of surrounding tissues was found to be 24 W, and the pause between sonications was found to be more than 40 s.
This paper presents an analysis of use of ultrasonic standing wave in cell separation from bodily fluids based on the example of erythrocyte separation from plasma. It describes movement of red blood cells in plasma under the influence of the acoustic field (whose forces result from interaction of red blood cells with plasma as the vibrating medium) and under the influence of resistance forces in Stokes’ and Oseen’s approximation. The general properties of solutions of the motion equation are given. The solutions for the parameters of the ultrasonic wave and blood cells which are interesting in terms of practical applications in medical diagnostics are discussed. Time constants of the cell transportation to the regions of stable equilibrium in the field of ultrasonic standing wave are estimated. The formulas which determine the time needed to obtain the assumed concentration increase in plasma in nodes and/or anti-nodes of the standing wave are derived.
The locally resonant sonic material (LRSM) is an artificial metamaterial that can block underwater sound. The low-frequency insulation performance of LRSM can be enhanced by coupling local resonance and Bragg scattering effects. However, such method is hard to be experimentally proven as the best optimizing method. Hence, this paper proposes a statistical optimization method, which first finds a group of optimal solutions of an object function by utilizing genetic algorithm multiple times, and then analyzes the distribution of the fitness and the Euclidean distance of the obtained solutions, in order to verify whether the result is the global optimum. By using this method, we obtain the global optimal solution of the low-frequency insulation of LRSM. By varying parameters of the optimum, it can be found that the optimized insulation performance of the LRSM is contributed by the coupling of local resonance with Bragg scattering effect, as well as a distinct impedance mismatch between the matrix of LRSM and the surrounding water. This indicates coupling different effects with impedance mismatches is the best method to enhance the low-frequency insulation performance of LRSM.
In this paper, we present the methods to detect the channel delay profile and the Doppler spectrum of shallow underwater acoustic channels (SUAC). In our channel sounding methods, a short impulse in form of a sinusoid function is successively sent out from the transmitter to estimated the channel impulse response (CIR). A bandpass filter is applied to eliminate the interference from out-of-band (OOB). A threshould is utilized to obtain the maximum time delay of the CIR. Multipath components of the SUAC are specified by correlating the received signals with the transmitted sounding pulse with its shifted phases from 0 to 2π. We show the measured channel parameters, which have been carried out in some lakes in Hanoi. The measured results illustrate that the channel is frequency selective for a narrow band transmission. The Doppler spectrum can be obtained by taking the Fourier transform of the time correlation of the measured channel transfer function. We have shown that, the theoretical maximum Doppler frequency fits well to that one obtained from measurement results.
The paper analyzes the monthly day equivalent levels, Lday (06–22 h) and night equivalent levels, Lnight (22–06 h) values observed in year 2015 and 2016 for the 70 locations whereby continuous noise monitoring is conducted under the National Ambient Noise Monitoring Network (NANMN). The study exclusively analyzes the ambient noise data acquired for 25 locations in commercial zone, 12 in industrial, 16 in residential and 17 in silence zones. The analysis of (Lday–Lnight) for 70 locations under observations reveals that 10 dB night time adjustment in day-night average sound level descriptor is not appropriate in such a scenario and as such it is recommended to use day-night average sound level and day-eveningnight average sound level descriptors without any 10 dB night time adjustment or 5 dB evening time adjustments. The analysis and conclusions of the present study shall be very useful for developing single value noise descriptor correlating the noise annoyance and health effects in Indian perspectives.
The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.
Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.
Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.
Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.
Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.