Nauki Techniczne

Archives of Acoustics

Zawartość

Archives of Acoustics | 2022 | vol. 47 | No 3

Abstrakt

The overall acoustic echo of a submarine is greatly dependent on the conning tower. For enhancing the acoustic stealth performance of a submarine, it is necessary to research an innovative design scheme of the conning tower to reduce its target strength (TS). The aim of this work is to reduce the TS of a conning tower by varying its geometry and streamlining. The accuracy in modelling the acoustic scattering of a conning tower using the Kirchhoff approximation (KA) was validated, compared with finite element analysis (FEA). Several angular conning tower geometries were designed to analyze the effect of streamlining and the number of lateral facets on TS using the KA method. In consideration of the actual situation, the acoustic effect of backing medium was analyzed by compared water-filled elastic hulls with rigid hulls. From the observed TS calculation results, it is shown that the non-streamlined four lateral-facet conning tower geometries are optimal for acoustic stealth performance during the range of incidence angles from −10X to 10X, whereas the streamlined versions have better performance at incidence angles beyond this range. Furthermore, elastic hulls and rigid hulls provide similar spatial distribution regularities in monostatic configuration with the rigidity affecting the magnitude of the TS.
Przejdź do artykułu

Autorzy i Afiliacje

Lin-Jiang Han
1
Hao Song
2
Chang-Xiong Chen
1
Xi-Rui Peng
3
Zi-Long Peng
1

  1. Jiangsu University of Science and Technology, Zhenjiang 212100, China
  2. Systems Engineering Research Institute, Beijing 100036, China
  3. China Ship Development and Design Center, Wuhan 430064, China

Abstrakt

The current study is dedicated to measuring vowel temporal acoustics (duration, durational difference, and durational ratio) in the medial position of mostly CVCVCV polysyllabic words in Arabic and Japanese, avoiding the asymmetries in vowel position, syllable structure, and coda consonant quantity (singleton versus geminate) observed in previous experiments. Twenty-nine (16 Arabic and 13 Japanese) participants were asked to use a carrier sentence to produce 60 polysyllabic (mainly CVCVCV) items that contrasted in vowel quantity (short versus long) and vowel quality (/a/, /i/, and /u/) at a normal speech rate. The results show that while short and long vowels are durationally distinct within a language, Japanese vowels are clearly longer than Arabic vowels, although the durational difference remains approximately the same between the two languages. The durational ratio of short-to-long vowel presents a new pattern that contrasts with that reported in earlier research. Specifically, Japanese long vowels in the medial position of polysyllabic words are twice as long as their short counterparts, while Arabic long vowels are more than twice as long. This shows that both vowel position and syllable structure must be considered when measuring vowel temporal acoustics or when structuring stimuli for perception experiments.
Przejdź do artykułu

Autorzy i Afiliacje

Yahya Aldholmi
1

  1. Department of Linguistics and Translation Studies, King Saud University, Riyadh, Saudi Arabia

Abstrakt

Heating, ventilation, air conditioning (HVAC) is one of crucial system in a vehicle. Unfortunately, its performance can be affected by the vibration of HVAC components, which subsequently produced unwanted noises. This paper presents an innovative design solution which called as tuneable dynamic vibration absorber (TDVA) to reduce the humming-type noise and vibration in the HVAC system. A detail investigation is carried by developing a lab-scale HVAC model that has the capability to imitate the real HVAC operation in a vehicle. An alternated air-condition (AC) with a fixed blower speed is implied in the study. The analysis of hummingtype noise and vibration induced from the HVAC components are performed, and the TDVA is designed and tuned according to the natural frequency of the AC pipe before the attachment. The humming-type noise and vibration characteristics of the HVAC components are compared before and after the implementation of the TDVA. The findings shown that the HVAC model data compares well with the vehicle data, whereby the implementation of TDVA is found to reduce the vibration of the AC pipe by 79% and 61% in both idle and operating conditions and this subsequently improved the humming-type noise of the HVAC system. It also been observed that the TDVA has an effective frequency range around 75–255 Hz and 100–500 Hz for the HVAC model and vehicle systems, respectively.
Przejdź do artykułu

Autorzy i Afiliacje

Muhammad Safwan Abdul Aziz
1
Ahmad Zhafran Ahmad Mazlan
1
Mohd Hafiz Abdul Satar
1
Muhammad Abdul Rahman Paiman
2
Mohd Zukhairi Abd Ghapar
2

  1. The VibrationLab, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Malaysia
  2. Testing and Development, Vehicle Development and Engineering, Proton Holdings Berhad, Shah Alam, Selangor, Malaysia

Abstrakt

Accurate definition of boundary conditions is of crucial importance for room acoustic predictions because the wall impedance phase angle can affect the sound field in rooms and acoustic parameters applied to assess a room reverberation. In this paper, the issue was investigated theoretically using the convolution integral and a modal representation of the room impulse response for complex-valued boundary conditions. Theoretical considerations have been accompanied with numerical simulations carried out for a rectangular room. The case of zero phase angle, which is often assumed in room acoustic simulations, was taken as a reference, and differences in the sound pressure level and decay times were determined in relation to this case. Calculation results have shown that a slight deviation of the phase angle with respect to the phase equal to zero can cause a perceptual difference in the sound pressure level. This effect was found to be due to a change in modal frequencies as a result of an increase or decrease in the phase angle. Simulations have demonstrated that surface distributions of decay times are highly irregular, while a much greater range of the early decay time compared to the reverberation time range indicates that a decay curve is nonlinear. It was also found that a difference between the decay times predicted for the complex impedance and real impedance is especially clearly audible for the largest impedance phase angles because it corresponds approximately to 4 just noticeable differences for the reverberation metrics.
Przejdź do artykułu

Autorzy i Afiliacje

Mirosław Meissner
1
Tomasz G. Zieliński
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the
equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma. It is shown that the divergence of a beam and its thermal self-action is unusual in some particular cases of parallel propagation (θ = 0) and has no analogues in the dynamics of the Newtonian beams. The nonlinear attenuation of Newtonian beams leads to their defocusing in gases, whereas the unusual cases correspond to the focusing in a presence of magnetic field. The examples of numerical calculations of thermal self-action of magnetoacoustic beams with shock fronts are considered in the usual and unusual cases of diffraction concerning stationary and non-stationary self-action. It is discovered that the diffraction is more (θ = 0) or less (θ = π/2) manifested as compared to that of the Newtonian beams. The beams which propagate oblique to the magnetic field do not reveal diffraction. The special case, when the sound and Alfvénic speeds are equal, is discussed. This magnetosonic beams incorporate acoustic and Alfvénic properties and do not undergo diffraction in this particular case.
Przejdź do artykułu

Bibliografia

Botha G.J.J., Arber T.D., Nakariakov V.M., Keenan F.P. (2000), A developed stage of Alfvén wave phase mixing, Astronomy and Astrophysics, 363(3): 1186–1194.

Callen J.D. (2003), Fundamentals of Plasma Physics, Lecture notes, University of Wisconsin, Madison.

Chin R., Verwichte E., Rowlands G., Nakariakov V.M. (2010), Self-organization of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17: 032107, doi: 10.1063/1.3314721.

Duck F.A. (2002), Nonlinear acoustics in diagnostic ultrasound, Ultrasound in Medicine & Biology, 28(1): 1–18, doi: 10.1016/S0301-5629(01)00463-X.

Freidberg J.P. (1987), Ideal Magnetohydrodynamics, Plenum Press, New York.

Hamilton M., Blackstock D. [Eds] (1998), Nonlinear Acoustics, Academic Press, New York.

Krall N.A., Trivelpiece A.W. (1973), Principles of Plasma Physics, McGraw Hill, New York.

Kuznetsov V.P. (1971), Equations of nonlinear acoustics, Soviet Physics Acoustics, 16: 467–470.

Leble S., Perelomova A. (2018) The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.

McLaughlin J.A., De Moortel I., Hood A.W. (2011), Phase mixing of nonlinear visco-resistive Alfvén waves, Astronomy & Astrophysics, 527: A149, doi: 10.1051/0004-6361/201015552.

Nakariakov V.M., Mendoza-Briceño C.A., Ibáñez M.H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas, The Astrophysical Journal, 528(2): 767–775, doi: 10.1086/308195.

Rudenko O.V., Sapozhnikov O.A. (2004), Self-action effects for wave beams containing shock fronts, Physics-Uspekhi, 47(9): 907–922.

Rudenko O.V., Soluyan S.I. (1977), Theoretical Foundations of Nonlinear Acoustics, Plenum, New York.

Yufeng Z. (2015), Principles and Applications of Therapeutic Ultrasound in Healthcare, Taylor & Francis Inc.

Przejdź do artykułu

Autorzy i Afiliacje

Anna Perelomova
1

  1. Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdansk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper presents theory of new shear horizontal (SH) acoustic surface waves that propagate along the interface of two semi-infinite elastic half-spaces, one of which is a conventional elastic medium and a second one an elastic metamaterial with a negative and frequency dependent shear elastic compliance.
This new surface waves have only one transverse component of mechanical displacement, which has a maximum at the interface and decays exponentially with distance from the interface. Similar features are also shown by the acoustic shear horizontal Maerfeld-Tournois surface waves propagating at the interface of two semi-infinite elastic media due to the piezoelectric effect that should occur in at least one semi-space.
The proposed new shear horizontal acoustic surface waves exhibit also strong formal similarities with the electromagnetic surface waves of the surface plasmon polariton (SPP) type, propagating along a metal-dielectric planar interface. In fact, the new shear horizontal elastic surface waves possess a large number of properties that are inherent for the SPP electromagnetic surface waves, such as strong subwavelength concentration of the wave field in the proximity of the guiding interface, low phase and group velocity etc. As a result, the new shear horizontal acoustic surface waves can find applications in sensors with extremely high sensitivity, employed in measurements of various physical parameters, such as viscosity of liquids, as well as in biosensors, chemosensors, or a near field acoustic microscopy (subwavelength imaging) and miniaturized devices of microwave acoustics.
Przejdź do artykułu

Bibliografia

Achenbach J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam.

Ambati M., Fang N., Sun C., Zhang X. (2007), Surface resonant states and superlensing in acoustic metamaterials, Physical Review B, 75(19): 195447, https://doi.org/10.1103/PhysRevB.75.195447.

Auld B.A. (1990), Acoustic Fields and Waves in Solids. Volume I, II, Krieger Publishing Company, Florida.

Bleustein J.L. (1968), A new surface wave in piezoelectric materials, Applied Physics Letters, 13: 412-413, 10.1063/1.1652495. https://doi.org/10.1063/1.1652495.

Born M., Wolf E. (1980), Principles of Optic, 6th ed., p. 625, Cambridge University Press, Cambridge.

Deng K., He Z., Ding Y., Zhao H., Liu Z. (2014), Surface-plasmon-polariton (SPP)-like acoustic surface waves on elastic metamaterials, arXiv, arXiv:1408.2186v1, 10.48550/arXiv.1408.2186, https://doi.org/10.48550/arXiv.1408.2186.

Kadic M., Bückmann T., Schittny R., Wegener M. (2013), Metamaterials beyond electromagnetism, Reports on Progress in Physics, 76(12): 126501, https://doi.org/10.1088/0034-4885/76/12/126501.

Kiełczyński P., Szalewski M., Balcerzak A., Wieja K. (2015), Group and Phase Velocity of Love Waves Propagating in Elastic Functionally Graded Materials, Archives of Acoustics, 40(2): 273–281, https://doi.org/10.1515/aoa-2015-0030.

Kiełczyński P. (2018), Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, 53: 419–432, 10.1016/j.apm.2017.09.013. https://doi.org/10.1016/j.apm.2017.09.013.

Kiełczyński P. (2021), New Fascinating Properties and Potential Applications of Love Surface Waves, Invited Speaker presentation at the IEEE, International Ultrasonic Symposium, September 11–16, 2021, Xi’an, China, http://zbae.ippt.pan.pl/strony/publikacje.htm.

Love A.E.H. (1911), Some Problems of Geodynamics, Cambridge University Press, London.

Maerfeld C., Tournois P. (1971), Pure shear elastic surface wave guided by the interface of two semi‐infinite media, Applied Physics Letters, 19(4): 117, 10.1063/1.1653836. https://doi.org/10.1063/1.1653836.

Maier S.A. (2007), Plasmonics: Fundamentals and Applications, Springer, Berlin.

Nkoma J., Loudon R., Tilley D.R. (1974), Elementary properties of surface polaritons, Journal of Physics C: Solid State Physics, 7(19): 3547–3559.

Rosenblatt G., Feigenbaum E., Orenstein M. (2010), Circular motion of electromagnetic power shaping the dispersion of surface plasmon polaritons, Optics Express, 18(25): 25861–25872, 10.1364/OE.18.025861. https://doi.org/10.1364/OE.18.025861.

Royer D., Dieulesaint E. (2000), Elastic Waves in Solids I, Springer, Berlin Heidelberg New York.

Wu Y., Lai Y., Zhang Z.-Q. (2011), Elastic metamaterials with simultaneously negative effective shear modulus and mass density, Physical Review Letters, 107(10): 105506, 10.1103/PhysRevLett.107.105506. https://doi.org/10.1103/PhysRevLett.107.105506.

Yu S.-Y., Wang J.-Q., Sun X.-C., Liu F.-K., He C., Xu H.-H., Lu M.-H., Christensen J., Liu X.-P., Chen Y.-F. (2020), slow surface acoustic waves via lattice optimization of a phononic crystal on a chip, Physical Review Applied, 14(6): 064008, 10.1103/PhysRevApplied.14.064008. https://doi.org/10.1103/PhysRevApplied.14.064008.

Zaccherini R., Colombi A., Palermo A., Dertimanis V.K., Marzani A., Thomsen H.R., Stojadinovic B., Chatzi E.N. (2020), Locally resonant metasurfaces for shear waves in granular media, Physical Review Applied, 13(3): 034055, 10.1103/PhysRevApplied.13.034055, https://doi.org/10.1103/PhysRevApplied.13.034055.

Zhang J., Zhang L., Xu W. (2020), Surface plasmon polaritons: physics and applications, Journal of Physics D: Applied Physics, 45(11): 113001.


Przejdź do artykułu

Autorzy i Afiliacje

Piotr Kiełczyński
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Abstrakt

The two-dimensional distribution of gas-solid flow parameters is a great research significance to reflect the actual situation in industry. The commonly used method is the ultrasonic tomography method, in which multiple probes are arranged at various angles, or the measurement device is rotated as that in medicine, but in most industrial situations, it is impossible to install probes at all angles or rotate the measured pipe. The backscattering method, however, uses only one transducer to both transmit and receive signals, and the twodimensional information is obtained by only rotating the transducer. Ultrasound attenuates greatly in the air, and the attenuation changes with frequency. Therefore, COMSOL is used to study the reflection of particles with different radii in the air to ultrasound with various frequencies. It is found that the backscattering equivalent voltage is the largest when the product of ultrasonic frequency and particle radius is about 27.78 Hz �� m, and the particle concentration of 30% causes the strongest backscattering. The simulated results are in good agreement with the Faran backscattering model, which can provide references for selecting the appropriate frequency and obtaining the concentration when measuring gas-solid two-phase flow with the ultrasonic backscattering method.
Przejdź do artykułu

Autorzy i Afiliacje

Jinhui Fan
1
Fei Wang
1

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China

Abstrakt

A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion, MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables efficient signal preprocessing for spectrograms.
Przejdź do artykułu

Autorzy i Afiliacje

Meng-Lun Hsueh
1
Jin-Peng Chen
2
Bing-Yuh Lu
2
Huey-Dong Wu
3
Pei-Yi Liu
2

  1. Graduate Institute of Intelligent Robotics, Hwa Hsia University of Technology, New Taipei City, Taiwan
  2. Faculty of Automation, Guangdong University of Petrochemical Technology, Guangdong, China
  3. Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan

Abstrakt

Kidney Cooling Jacket (KCJ) preserves the kidney graft, wrapped in the jacket, against the too fast time of temperature rise during the operation of connecting a cooled transplant to the patient’s bloodstream. The efficiency of KCJ depends on the stationarity of the fluid flow and its spatial uniformity. In this paper, the fluid velocity field inside the three different KCJ prototypes has been measured using the 20 MHz ultrasonic Doppler flowmeter. The simplified 2D geometrical model of the prototypes has been presented using COMSOL Multiphysics to simulate the fluid flow assuming the laminar flow model. By comparing the numerical results with experimental data, the simplified 2D model is shown to be accurate enough to predict the flow distribution of the internal fluid velocity field within the KCJ. The discrepancy between the average velocity measured using the 20 MHz Doppler and numerical results was mainly related to the sensitivity of the velocity measurements to a change of the direction of the local fluid flow stream. Flux direction and average velocity were additionally confirmed by using commercial colour Doppler imaging scanner. The current approach showed nearly 90% agreement of the experimental results and numerical simulations. It was important for justifying the use of numerical modelling in designing the baffles distribution (internal walls in the flow space) for obtaining the most spatially uniform field of flow velocity.
Przejdź do artykułu

Autorzy i Afiliacje

Barbara Gambin
1
ORCID: ORCID
Ilona Korczak-Cegielska
2
Wojciech Secomski
1
Eleonora Kruglenko
1
Andrzej Nowicki
1

  1. Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  2. Doctoral Studies of Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Abstrakt

The objective of this paper is an experimental study of the most crucial parameters of the received acoustic signals (e.g. signal-to-noise ratio (SNR), side-lobes level (SLL), axial resolution) obtained as a result of simultaneous emission of mutually orthogonal Golay complementary sequences (MOGCS) to demonstrate their feasibility of being used in ultrasound diagnostics. Application of the MOGCS in ultrasound measurements allows the image reconstruction time to be shortened without decreasing the resulting quality of reconstructed images in comparison with regular complementary Golay coded sequences (CGCS). In this paper two sets of 16-bits long MOGCS were implemented in the Verasonics Vantage TM (Verasonics Inc., Kirkland, WA, USA) scanner. Ultrasound data were generated using a perfect reflector, a custom-made nylon wire phantom and tissue mimicking phantom. Parameters of the detected MOGCS echoes like SNR, SLL and axial resolution were determined and compared to that of the standard CGCS and the short two-sine cycles pulse. It was evidenced that applying MOGCS did not compromise the parameters of the separated and compressed echoes in comparison to the other types of transmitted signal – the CGCS and the short pulse. Concretely, both the MOGCS and CGCS yield similar SNR increase in comparison to the short pulse. Almost similar values of the axial resolution estimated at the full width at the half maximum level for all types of the transmitted signals were also obtained. At the same time, using the MOGCS the data acquisition speed can be increased twice in comparison with the CGCS signal.
Przejdź do artykułu

Autorzy i Afiliacje

Ihor Trots
1
Norbert Żołek
1
Yurij Tasinkevych
1
Janusz Wójcik
1

  1. Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Abstrakt

In this paper, a 2D numerical modeling of sound wave propagation in a shallow water medium that acts as a waveguide, are presented. This modeling is based on the method of characteristic which is not constrained by the Courant–Friedrichs–Lewy (CFL) condition. Using this method, the Euler time-dependent equations have been solved under adiabatic conditions inside of a shallow water waveguide which is consists of one homogeneous environment of water over a rigid bed. In this work, the stability and precision of the method of characteristics (MOC) technique for sound wave propagation in a waveguide were illustrated when it was applied with the semi-Lagrange method. The results show a significant advantage of the method of characteristics over the finite difference time domain (FDTD) method.
Przejdź do artykułu

Autorzy i Afiliacje

Mohammad Reza Khalilabadi
1

  1. Faculty of Naval Aviation, Malek Ashtar University of Technology, Iran

Abstrakt

It is essential for oceanographers to study the effects of marine phenomena such as currents, surface mixed layer, eddies, internal waves, and other ocean features on acoustic propagation, as most marine measurement equipment operates on this basis, like sonar. The eddy impact on acoustic transmission in the marine environment is very significant because changes in temperature and salinity disrupt the sound speed due to the presence of eddy, thus the acoustic propagation in the sea. Although cold eddies are in the Persian Gulf widely, one eddy is selected to study their impacts on acoustic propagation because they have similar properties in terms of temperature and salinity. In this research, after identifying eddies in the Persian Gulf automatically, the effect of a cold eddy on acoustic propagation was investigated at different depths using the BELLHOP model. Most eddies are cyclonic with 5–10 km of radius based on algorithm outputs. Studies on the lifespan of eddies showed that the occurrence of cyclonic eddies with a lifespan of more than three days is more than anticyclonic ones. Examination of the eddy effect on acoustic propagation showed that the transmission loss (TL) during the progress of the acoustic wave across the eddy increases with increasing the depth of the sound source. Also, the presence of cold eddy compared to the conditions it does not exist increases the transmission loss. The study of three-dimensional acoustic propagation also confirmed the obtained results in two-dimensional mode and clearly showed the role of cold eddy in increasing the TL.
Przejdź do artykułu

Autorzy i Afiliacje

Omid Mahpeykar
1
Amir Ashtari Larki
1
Mohammad Akbari Nasab
2

  1. Department of Physical Oceanography, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
  2. Department of Marine Physics, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran

Instrukcja dla autorów

Author Guidelines
• Manuscripts intended for publication in Archives of Acoustics should be submitted in pdf format by an on-line procedure.
• Manuscript should be original, and should not be submitted either previously or simultaneously elsewhere, neither in whole, nor in part.
• Submitted papers must be written in good English and proofread by a native speaker.
• Basically, the papers should not exceed 40 000 typographic signs.
• Postal addresses, affiliations and email addresses for each author are required.
• Detailed information see Article Requirements.
• Manuscript should be accompanied by a cover letter containing the information:
o why the paper is submitted to ARCHIVES OF ACOUSTICS,
o suggestion on the field of acoustics related to the topic of the submitted paper,
o the statement that the manuscript is original, the submission has not been previously published, nor was sent to another journal for consideration,
o 3–5 names of suggested reviewers together with their affiliations, full postal and e-mail addresses; at least 3 suggested reviewers should be affiliated with other scientific institutions than the affiliations of the authors,
o author’s suggestion to classification of the paper as the research paper, review paper or technical note.

Article Requirements
1. At submission time only a PDF file is required. After acceptance, authors must submit all source material (see information about Figures). Authors can use their preferred manuscript-preparation software. The journal itself is produced in LaTeX, so accepted articles will be converted to LaTeX at production time.
2. The title of the paper should be as short as possible.
3. Full names and surnames should be given.
4. The full postal address of each affiliation, including the country name should be provided. Affiliations should contain the full postal address, as well as an e-mail address of one author designated as corresponding author.
5. The text should be preceded by a concise abstract (less than 200 words).
6. Keywords should be given.
7. The formulae to be numbered are those referred to in the paper, as well as the final formulae.
8. All notations should be written very distinctly.
9. References in the text (author(s) and year of publication) are to be cited between parentheses.
Items appearing in the reference list should be complete, including surname and the initials of the first name of the author, the full title of the paper/book in English followed by the information on the original paper language. In case of a book, the publisher's name, the place and year of publication should be given. In case of a periodical, the full title of the periodical, consecutive volume number, current issue number, pages, and year of publication should be given. All references in the bibliography should be cited in the text, and arranged in alphabetical order by authors' last name.
For more information on references see http://acoustics.ippt.gov.pl/public/Instructions.pdf.
10. Figures must be of publication quality. Each figure should be saved in separate file and captioned and numbered so that it can float. After acceptance, Authors will need to submit the original source files for all photos, diagrams and graphs in manuscript.
For diagrams and graphs vector EPS or vector PDF files are the most useful. Make sure that what you're saving is vector graphics and not a bitmap. Please also include the original data for any plots. This is particularly important if you are unable to save Excel-generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets instead.
Photographs should be high-quality – with resolution no lower than 300 dpi.
Pack all figure files into a single archive (zip, tar, rar or other format) and then upload on the magazine web site.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji