Applied sciences

Bulletin of the Polish Academy of Sciences Technical Sciences

Content

Bulletin of the Polish Academy of Sciences Technical Sciences | 2006 | vol. 54 | No 2

Download PDF Download RIS Download Bibtex

Abstract

Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990’s due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al2O3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-ofthe-art in understanding and designing the Ni/alumina interface. There should be no doubt that optimization of the interface- and composite microstructure through judicious control of the fabrication process and surface modification shall yield technologically promising Ni-base/oxide fiber composites.

Go to article

Authors and Affiliations

R. Asthana
S.T. Mileiko
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

Titanium nitride (TiN) is regarded as a potential biomaterial for blood-contact applications. TiN thin films were fabricated by pulsed

laser deposition with the Nd:YAG laser on biologically applied polyurethane. Transmission electron microscopy (TEM) study of 250 nm thick films revealed columnar structure. Such films were observed to be brittle, which led to crack formation and secondary nucleation of microcolumn. TEM studies showed a kinetic mechanism of growth (columnar) in films of 250 nm thickness. It was stated that thinner films were much smoother and uniform than the thicker ones, which could be associated with the surface diffusion mechanism to appear. In order to improve the coatings elasticity, the thickness was reduced to 50 nm, which limited the deposition mechanism operation to the early stage. TEM cross-section observation revealed elastic properties of thin films. A biological test showed that TiN surface film produced on polyurethane is characterized by good biocompatibility and decreased surface affinity for cell adhesion. Films of 0.25 and 0.5 1m thick of TiN were selected for theoretical finite element modelling (FEM) using ADINA program. The micro cracks formation predicted in simulation was verified by phenomena observed in microstructure examinations.

Go to article

Authors and Affiliations

R. Ebner
J.M. Lackner
W. Waldhauser
R. Major
E. Czarnowska
R. Kustosz
P. Lacki
B. Major
Download PDF Download RIS Download Bibtex

Abstract

Mechanical components and tools in modern industry are facing increasing performance requirements leading to the growing need for advanced materials and thus, for modern frictional systems. In the last decades, the Pulsed Laser Deposition (PLD) has emerged as an unique tool to grow high quality mono- as well as multilayers surfaces in metallic/ceramic systems. Building up a knowledge base of tribological properties of industrially-scaled, room temperature deposited PLD hard coatings are the most important step for the application of these coatings in engineering design. Although single-layer coatings find a range of applications, there are an increasing number of applications where the properties of a single material are not sufficient. One way to surmount this problem is to use a multilayer coating. Application of metallic interlayers improves adhesion of nitride hard layer in multilayer systems, which has been used in PVD processes for many years, however, the PLD technique gives new possibilities to produce system comprising many bilayers at room temperature. Tribological coatings consisted of 2, 4 and 16 bilayers of Cr/CrN and Ti/TiN type were fabricated with the Pulsed Laser Deposition (PLD) technique in the presented work. It is found in transmission electron examinations on thin foils prepared from cross-section that both nitride-based multilayer structures studied are characterized by small columnar crystallite sizes and high defect density, what might rise their hardness but compromise coating adhesion. The intermediate metallic layers contained larger sized and less defective columnar structure compared to the nitride layers, which should improve the coatings toughness. Switching from single layer to multi-layer metal/nitride composition improved resistance to delamination.

Go to article

Authors and Affiliations

J.M. Lackner
W. Waldhauser
L. Major
J. Morgiel
M. Kot
B. Major
Download PDF Download RIS Download Bibtex

Abstract

Boron nitride thin layers were produced by means of the pulsed laser deposition technique from hexagonal boron nitride target. Two types of laser i.e. Nd:YAG with Q-switch as well as KrF coupled with RF generator were used. Influence of deposition parameters on surface morphology, phase composition as well as mechanical properties is discussed. Results obtained using Fourier Transformed Infrared Spectroscopy, Transmission and Scanning Electron Microscopy, Atomic Force Microscopy are presented. Micromechanical properties measured during microindentation, scratch and wear tests are also shown.

Go to article

Authors and Affiliations

B. Major
W. Mróz
M. Jelinek
R. Kosydar
M. Kot
Ł. Major
S. Burdyńska
R. Kustosz
Download PDF Download RIS Download Bibtex

Abstract

The work presents a computer simulation realized with the ADINA program concerning nanoindendation test. A shape of nanoindenter was proposed to be similar to the real surgical tools. The theoretical model was used to predict phenomena which would appear in practice. The contribution of the TiN coating thickness to the implant rigid properties was simulated. Three types of extortion conditions could be considered, i.e., short contact with surgery tool (i); long continuous contact with natural tissue (ii); long cyclic contact with natural tissue (iii). In the first part of the work, the authors focused on the first type of extortion (i). The second part of the work is dedicated to the calculations of temperature impact to layer behaviour. Two layer thicknesses are considered i.e., 250 nm and 50 nm. The examined coatings find serious practical applications as a blood-contacting material in medicine. The coatings were subjected to transmission electron microscopy investigations. Columnar mechanism of film growth controlled by kinetic process is stated to operate for the considered range of layer thickness. Plasma temperature is observed to influence the substrate behaviour. Examinations of thinner layers, i.e. under 100nm, revealed higher degree of smoothness and uniformity, which could be related to the operation of the surface diffusion mechanism at the early stage of deposition. The physical explanation of TEM images was based on the finite element calculations of the temperature distribution using the ADINA program .

Go to article

Authors and Affiliations

R. Major
P. Lacki
J.M. Lackner
B. Major
Download PDF Download RIS Download Bibtex

Abstract

The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.

Go to article

Authors and Affiliations

I.V. Alexandrow
M.V. Zhilina
J.T. Bonarski
Download PDF Download RIS Download Bibtex

Abstract

The orientations of recrystallization nuclei and their adjacent as-deformed regions have been characterised in deformed single crystals of different metals (Ag, Cu, Cu-2%wt.Al and Cu-8%wt.Al) in which twinning and/or shear banding occur. {112}<111> oriented crystals of these metals have been compressed to different strains, then lightly annealed, and the crystallographic aspects of the recrystallization process along shear bands examined by local orientation measurement in TEM and SEM. The results clearly show the existence of a well-defined crystallographic relation between the local deformation substructure and the first recrystallized areas of uniform orientation. The first-formed nuclei always exhibit near 25–400(<111>–<112>) type misorientations, in the direction of highest growth, with respect to one of the two main groups of the deformation texture components. The rotation axes can be correlated with the slip plane normal of highest activity. As recrystallization proceeds, recrystallization twinning develops strongly and facilitates rapid growth; the first and higher generations of twins then tend to obscure the initial primary crystallographic relation between the shear bands and recrystallization nuclei .

Go to article

Authors and Affiliations

H. Paul
J.H. Driver
Download PDF Download RIS Download Bibtex

Abstract

The paper presents general information on LTCC materials, manufacturing processes and properties of fired modules. A Multichip Module package has been the main application of Low Temperature Cofired Ceramic (LTCC) technology. Recently, this technology is also used for production of sensors, actuators and microsystems. The research and development on the LTCC sensors and microsystems carried out in the Laboratory of Thick Film Microsystems at Wroclaw University of Technology are presented. LTCC microfluidic system is described in detail. Moreover, a short information is given on other LTCC applications .

Go to article

Authors and Affiliations

L.J. Golonka

This page uses 'cookies'. Learn more