Applied sciences

Bulletin of the Polish Academy of Sciences Technical Sciences

Content

Bulletin of the Polish Academy of Sciences Technical Sciences | 2022 | 70 | No. 6 (i.a. Special Section on Sustainability in production in the aspect of Industry 4.0)

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Ewa Dostatni
2
ORCID: ORCID
Lucjan Pawłowski
3
ORCID: ORCID
Katarzyna M. Węgrzyn-Wolska
4
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Mechanical Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznan, Poland
  3. Environmental Engineering Faculty, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland
  4. EFREI Paris Pantheon Assas University, 30-32 Avenue de la République, 94800, Villejuif, Paris, France
Download PDF Download RIS Download Bibtex

Abstract

Reviewing the current state of knowledge on sustainable production, this paper opens the Special Section entitled “Sustainability in production in the context of Industry 4.0”. The fourth industrial revolution (Industry 4.0), which embodies a vision for the future system of manufacturing (production), focuses on how to use contemporary methods (i.e. computerization, robotization, automation, new business models, etc.) to integrate all manufacturing industry systems to achieve sustainability. The idea was introduced in 2011 by the German government to promote automation in manufacturing. This paper shows the state of the art in the application of modern methods in sustainable manufacturing in the context of Industry 4.0. The authors review the past and current state of knowledge in this regard and describe the known limitations, directions for further research, and industrial applications of the most promising ideas and technologies.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Ewa Dostatni
2
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Lucjan Pawłowski
3
ORCID: ORCID
Katarzyna M. Węgrzyn-Wolska
4
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
  2. Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
  3. Environmental Engineering Faculty, Lublin University of Technology, 20-618 Lublin, Poland
  4. EFREI Paris Pantheon Assas University, 30-32 Avenue de la République, 94800, Villejuif, France
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Go to article

Authors and Affiliations

Anna Burduk
1
ORCID: ORCID
Kamil Musiał
1
Artem Balashov
1
Andre Batako
2
Andrii Safonyk
3
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  2. Liverpool John Moores University, Faculty of Engineering and Technology,70 Mount Pleasant Liverpool L3 3AF, UK
  3. National University of Water and Environmental Engineering, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, Rivne 33000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Increasing the role of sustainable production benefits in transforming manufacturing towards the sustainable organisation. The proposed model integrates two dimensions, namely, the Sustainable Business Model (SBM) and the Enterprise Resource Planning (ERP) system, and defines it as the SBM-ERP. This paper focuses attention on determining SBM-ERP based on the literature research, Fuzzy Analytical Hierarchy Process (F-AHP) method and the results of the analysis on the experiences with the implementation of the ERP system in manufacturing. It was determined that the proprietary approach allows the company’s sustainable manufacturing activities to be organised and monitored, based on real-time data and information, as updated and included in the ERP system. We also emphasized the practicality of the proposed approach for managers of manufacturing companies with an implemented ERP system.
Go to article

Authors and Affiliations

Justyna Patalas-Maliszewska
1
ORCID: ORCID
Sławomir Kłos
1
Ewa Dostatni
2
ORCID: ORCID

  1. University of Zielona Góra, Szafrana 4, 65-516 Zielona Góra, Poland
  2. Poznan University of Technology, M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The publication reflects the current situation concerning the possibilities of using augmented reality (AR) technology in the field of production technologies with the main intention of creating a tool to increase production efficiency. It is a set of individual steps that respond in a targeted manner to the possible need for assisted service intervention on a specific device. The publication chronologically describes the procedure required for the preparation and processing of a CAD model. For this preparatory process, the PTC software package is used which meets the requirements for each of the individual operations. The first step is the routine preparation of CAD models and assemblies. These are prepared based on real models located on the device, and their shape and dimensions correlate with the dimensions of the model on the device. The second phase is the creation and timing of the disassembly sequence. This will provide the model with complete vector data, which is then paired with the CAD models in AR. This phase is one of the most important. It determines the location of the model concerning its relative position on the device, provides information on the relocation of parts of the model after the sequence is started, and essentially serves as a template for the interactive part of the sequence. The last two phases are used to connect CAD models with vector data, determine their position for the position mark, and prepare the user interface displayed on the output device. The result of this procedure is a functional disassembly sequence, used for assisted service intervention of a worker in the spindle drive of the Emco Mill 55 device.
Go to article

Authors and Affiliations

Justyna Trojanowska
1
Jakub Kašcak
2
ORCID: ORCID
Jozef Husár
2
ORCID: ORCID
Lucia Knapcíková
3
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, Piotrowo Street 3, 61-138 Poznan, Poland
  2. Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Department of Computer Aided Manufacturing Technology, Šturova 31, 080 01 Prešov, Slovak Republic
  3. Technical University of Košice, Faculty of Manufacturing Technologies with a seat in Prešov, Department of Industrial Engineering and Informatics, Bayerova 1, 080 01 Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Contemporary societies are strongly dependent existentially and economically on the supply of electricity, both in terms of supplying devices from the power grid, as well as the use of energy storage and constant voltage sources. Electrochemical batteries are commonly used as static energy storage. According to forecasts provided by the Environmental Protection Agency at the global and EU level, in 2025 lead-acid technologies will continue to dominate, with the simultaneous expansion of the lithium-ion battery market. The production, use and handling of used batteries are associated with a number of environmental and social challenges. The way batteries influence the environment is becoming more and more significant, not only in the phase of their use but also in the production phase. The article presents how to effectively reduce the environmental impact of the battery production process by stabilizing it. In the presented example, the proposed changes in the battery assembly process facilitated the minimization of material losses from 0.33% to 0.05%, contributing to the reduction of the negative impact on the environment.
Go to article

Authors and Affiliations

Agnieszka Kujawinska
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Krzysztof Brzozowski
1

  1. Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study is devoted to the co-design concept which is not widely studied in the manufacturing industry area. The concept is just practiced but not theorized and not investigated enough, although it greatly deserves it because of its perspectives and advantages potential in the technology changes era. This study aims to present an investigation of literature views on co-design in manufacturing operations, with the comparison to service literature where it is widely discussed; the study also aims at in-depth investigations of co-design occurrences in two industrial cases of product development to understand their nature and circumstances. In addition, the influence of Industry 4.0 technologies and their coexistence with the concept of sustainability will also be strongly taken into consideration in the empirical part of this study. The process of the individualized production of the industrial line for animal food packing and cardboard packaging production has been studied according to case study methodology. The study demonstrates that co-design could contribute to bettering the process of new product development and achieving products more accurate for the final users’ requirements. It goes hand in hand with one of the core ideas of sustainability, which is to have long-lasting products, exploited by the customer with a high level of satisfaction for a longer time. The study implies that the technologies of Industry 4.0 could support wider and more effective co-design exploitation by manufacturing entities.
Go to article

Authors and Affiliations

Elżbieta Krawczyk-Dembicka
1
ORCID: ORCID
Wiesław Urban
1
ORCID: ORCID
Krzysztof Łukaszewicz
1
ORCID: ORCID

  1. Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a metrological analysis of the additively manufactured (AM) copies of a complex geometrical object, namely the fossil skull of Madygenerpeton pustulatum. This fossil represents the unique remains of an extinct “reptiliomorph amphibian” of high importance for palaeontological science. For this research, the surface was scanned and twelve different copies were 3D-printed using various devices, materials, and AM techniques. The same digitized model was used as a reference to compare with the surfaces obtained by Mitutoyo Coordinate Measuring Machine (CMM) CRYSTA-Apex S 9166 for each copy. The fidelity of the copies was assessed through statistical analysis of the distances between compared surfaces. The methodology provided a good background for the choice of the most accurate copies and the elimination of the less accurate ones. The proposed approach can be applied to any object of complex geometry when reproduction accuracy is to be assessed.
Go to article

Authors and Affiliations

Mirosław Rucki
1
ORCID: ORCID
Yaroslav Garashchenko
2
ORCID: ORCID
Ilja Kogan
3 4
ORCID: ORCID
Tomasz Ryba
5
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
  2. Department of Integrated Technologic Process and Manufacturing, National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  3. Museum für Naturkunde Chemnitz, Germany
  4. Geological Institute, TU Bergakademie Freiberg, Germany
  5. Łukasiewicz Research Network – Institute for Sustainable Technologies, Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

The electrical network is a man-made complex network that makes it difficult to monitor and control the power system with traditional monitoring devices. Traditional devices have some limitations in real-time synchronization monitoring which leads to unwanted behavior and causes new challenges in the operation and control of the power systems. A Phasor measurement unit (PMU) is an advanced metering device that provides an accurate real-time and synchronized measurement of the voltage and current waveforms of the buses in which the PMU devices are directly connected in the grid station. The device is connected to the busbars of the power grid in the electrical distribution and transmission systems and provides time-synchronized measurement with the help of the Global Positioning System (GPS). However, the implementation and maintenance cost of the device is not bearable for the electrical utilities. Therefore, in recent work, many optimization approaches have been developed to overcome optimal placement of PMU problems to reduce the overall cost by providing complete electrical network observability with a minimal number of PMUs. This research paper reviews the importance of PMU for the modern electrical power system, the architecture of PMU, the differences between PMU, micro-PMU, SCADA, and smart grid (SG) relation with PMU, the sinusoidal waveform, and its phasor representation, and finally a list of PMU applications. The applications of PMU are widely involved in the operation of power systems ranging from power system control and monitor, distribution grid control, load shedding control and analyses, and state estimation which shows the importance of PMU for the modern world.
Go to article

Authors and Affiliations

Maveeya Baba
1
ORCID: ORCID
Nursyarizal B.M. Nor
1
Aman Sheikh
2
Grzegorz Nowakowski
3
ORCID: ORCID
Faisal Masood
1
Masood Rehman
1
Muhammad Irfan
4
ORCID: ORCID
Ahmed Amirul Arefin
Rahul Kumar
5
Baba Momin
6

  1. Department of Electrical and Electronics Engineering Universiti Teknologi Petronas, Malaysia
  2. Department of Electronics and Computer Systems Engineering (ECSE), Cardiff School of Technologies, Cardiff Metropolitan University, United Kingdom
  3. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  4. College of Engineering, Electrical Engineering Department, Najran University, Saudi Arabia
  5. Laboratorio di Macchine e Azionamenti Elettrici, Dipartmento di Ingegneria Elettrica, Universita Degli Studi di Roma, 00185 Rome, Italy
  6. Department of Electrical Engineering CECOS University of Information Technology and Emerging Sciences, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Abstract. The paper introduces a neuromorphic computational approach for breathing rate monitoring of a single person observed using a Frequency-Modulated Continuous Wave radar. The architecture, aimed at implementation in analog hardware to ensure high energy efficiency and to provide system operation longevity, comprises two main functional modules. The first one is a data preprocessing unit aimed at the extraction of information relevant to the analysis objective, whereas the second one is a pre-trained recurrent neural regressor, which analyzes sequences of incoming samples and estimates the breathing rate. To ensure compatibility with neural processing and to achieve simplicity of underlying resources, several solutions were proposed for the data preprocessing module, which provides range-wise space segmentation, selection of a bin of interest (comprising the dominant motion activity), and delivery of data to regressor inputs. To implement these functions, we introduce an appropriate chirp frequency modulation scheme, apply a neuromorphic filtering procedure and use a Winner-Takes-All network for extracting information from the bin of interest. The architecture has been experimentally verified using a dataset of indoor recordings supplied with reference data from a Zephyr BioHarness device. We show that the proposed architecture is capable of making correct breathing rate estimates while being feasible for analog implementation. The mean squared regression error with respect to the Zephyr-produced reference values is approximately 3.3 breaths per minute (with a deviation of ±0:27 in the 95% confidence interval) and the estimates are produced by a recurrent, GRU-based neural regressor, with a total of only 147 parameters.
Go to article

Authors and Affiliations

Krzysztof Ślot
1
ORCID: ORCID
Piotr Łuczak
1
ORCID: ORCID
Sławomir Hausman
2
ORCID: ORCID

  1. Institute of Applied Computer Science, Lodz University of Technology
  2. Institute of Electronics, Lodz University of Technology
Download PDF Download RIS Download Bibtex

Abstract

Face Sketch Recognition (FSR) presents a severe challenge to conventional recognition paradigms developed basically to match face photos. This challenge is mainly due to the large texture discrepancy between face sketches, characterized by shape exaggeration, and face photos. In this paper, we propose a training-free synthesized face sketch recognition method based on the rank-level fusion of multiple Image Quality Assessment (IQA) metrics. The advantages of IQA metrics as a recognition engine are combined with the rank-level fusion to boost the final recognition accuracy. By integrating multiple IQA metrics into the face sketch recognition framework, the proposed method simultaneously performs face-sketch matching application and evaluates the performance of face sketch synthesis methods. To test the performance of the recognition framework, five synthesized face sketch methods are used to generate sketches from face photos. We use the Borda count approach to fuse four IQA metrics, namely, structured similarity index metric, feature similarity index metric, visual information fidelity and gradient magnitude similarity deviation at the rank-level. Experimental results and comparison with the state-of-the-art methods illustrate the competitiveness of the proposed synthesized face sketch recognition framework.
Go to article

Authors and Affiliations

Sami Mahfoud
1
ORCID: ORCID
Abdelhamid Daamouche
1
ORCID: ORCID
Messaoud Bengherabi
2
ORCID: ORCID
Abdenour Hadid
3
ORCID: ORCID

  1. University M’Hamed Bougara of Boumerdes, Institute of Electrical and Electronic Engineering, Laboratory of Signals and Systems, Boumerdes, 35000, Algeria
  2. Center for Development of Advanced Technologies, P.O. Box 17 Baba-Hassen 16303, Algiers, Algeria
  3. Sorbonne University Abu Dhabi, Sorbonne Center for Artificial Intelligence, Abu Dhabi, UAE
Download PDF Download RIS Download Bibtex

Abstract

The development of surveillance video vehicle detection technology in modern intelligent transportation systems is closely related to the operation and safety of highways and urban road systems. Yet, the current object detection network structure is complex, requiring a large number of parameters and calculations, so this paper proposes a lightweight network based on YOLOv5. It can be easily deployed on video surveillance equipment even with limited performance, while ensuring real-time and accurate vehicle detection. Modified MobileNetV2 is used as the backbone feature extraction network of YOLOv5, and DSC “depthwise separable convolution” is used to replace the standard convolution in the bottleneck layer structure. The lightweight YOLOv5 is evaluated in the UA-DETRAC and BDD100k datasets. Experimental results show that this method reduces the number of parameters by 95% as compared with the original YOLOv5s and achieves a good tradeoff between precision and speed.
Go to article

Authors and Affiliations

Yurui Wang
1
ORCID: ORCID
Guoping Yang
1
Jingbo Guo
1

  1. Shanghai University of Engineering Science, School of Mechanical and Automotive Engineering, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

It is shown that in uncontrollable linear system = Ax + Bu it is possible to assign arbitrarily the eigenvalues of the closed-loop system with state feedbacks u = Kx, K ∈ ℜnm if rank [A B] = n. The design procedure consists in two steps. In the step 1 a nonsingular matrix  M ∈ ℜnm is chosen so that the pair (MA,MB) is controllable. In step 2 the feedback matrix K is chosen so that the closed-loop matrix Ac = A  − BK has the desired eigenvalues. The procedure is illustrated by simple example.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main goal of estimating models for industrial applications is to guarantee the cheapest system identification. The requirements for the identification experiment should not be allowed to affect product quality under normal operating conditions. This paper deals with ensuring the required liquid levels of the cascade system tanks using the model predictive control (MPC) method. The MPC strategy was extended with the Kalman filter (KF) to predict the system’s succeeding states subject to a reference trajectory in the presence of both process and measurement noise covariances. The main contribution is to use the application-oriented input design to update the parameters of the model during system degradation. This framework delivers the least-costly identification experiment and guarantees high performance of the system with the updated model. The methods presented are evaluated both in the experiments on a real process and in the computer simulations. The results of the robust MPC application for cascade system water levels control are discussed.
Go to article

Authors and Affiliations

Wiktor Jakowluk
1
ORCID: ORCID
Sławomir Jaszczak
2

  1. Bialystok University of Technology, Faculty of Computer Science, Wiejska 45A, 15-351 Białystok, Poland
  2. West Pomeranian University of Technology in Szczecin, Faculty of Computer Science and Information Technology, Żołnierska 49, ˙71-210 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, we analyze the model of a single–server queueing system with limited number of waiting positions, random volume customers and unlimited sectorized memory buffer. In such a system, the arriving customer is additionally characterized by a non– negative random volume vector whose indications usually represent the portions of unchanged information of a different type that are located in sectors of unlimited memory space dedicated for them during customer presence in the system. When the server ends the service of a customer, information immediately leaves the buffer, releasing resources of the proper sectors. We assume that in the investigated model, the service time of a customer is dependent on his volume vector characteristics. For such defined model, we obtain a general formula for steady–state joint distribution function of the total volume vector in terms of Laplace-Stieltjes transforms. We also present practical results for some special cases of the model together with formulae for steady–state initial moments of the analyzed random vector, in cases where the memory buffer is composed of at most two sectors. Some numerical computations illustrating obtained theoretical results are attached as well.
Go to article

Authors and Affiliations

Marcin Ziółkowski
1
ORCID: ORCID
Oleg Tikhonenko
2
ORCID: ORCID

  1. Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Poland
  2. Institute of Computer Science, Cardinal Stefan Wyszynski University in Warsaw, Poland

Authors and Affiliations

Zhiyong Yang
1 2
ORCID: ORCID
Long Wang
2
Yanjun Yu
2
Zhenping Mou
2
Minghui Ou
1 2

  1. Chongqing Vocational Institute of Engineering, Chongqing 402260, PR China
  2. College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, PR China
Download PDF Download RIS Download Bibtex

Abstract

The conditions for accurately intercepting hypersonic vehicles by low-speed interceptors in the terminal guidance process are examined, considering the general form of a guidance scheme. First, based on the concept of the engagement geometry, three interception scenarios are established considering different manoeuvring configurations of the interceptors and hypersonic vehicle. Second, the boundary conditions for intercepting hypersonic vehicles (with speeds higher than those of the interceptors) are specified for the three scenarios, considering several factors: the speed, path angle, line-of-sight angle, and available overload of the interceptor; path angle and manoeuvrability of the hypersonic vehicle; and relative distance between the interceptor and vehicle. A series of simulations are performed to clarify the influence of each factor on the interception performance in the three interception scenarios. The challenges associated with accurately intercepting hypersonic vehicles by low-speed interceptors are summarised, and several recommendations for designing guidance laws are presented.
Go to article

Authors and Affiliations

Shuangxi Liu
1
ORCID: ORCID
Shijun Liu
2
Binbin Yan
3
ORCID: ORCID
Tong Zhang
1
Xu Zhang
1
Jie Yan
1

  1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
  2. Shanghai Aerospace Equipment Manufacturer Co., Ltd, Shanghai 200245, China
  3. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Download PDF Download RIS Download Bibtex

Abstract

An in-situ nanoindenter with a flat tip was employed to conduct buckling tests of a single nanowire with simultaneous SEM imaging. A series of SEM images allowed us to calculate deflection. The deflection was confronted with the mathematical model of elastica. The post-buckling behaviour of nanowires is conducted in the framework of the nonlinear elasticity theory. Results show the significant effect of geometrical parameters on the stability of buckled nanowires.
Go to article

Authors and Affiliations

Aleksandra Manecka-Padaż
1
ORCID: ORCID
Piotr Jenczyk
1
ORCID: ORCID
Ryszard B. Pęcherski
1
ORCID: ORCID
Anna Nykiel
2
ORCID: ORCID

  1. Institute of Fundamental Technological Research Polish Academy of Sciences, Poland
  2. Institute of Nuclear Physics Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

In 2020, an international project on residential lighting started and was implemented in four countries (Poland, Sweden, UK and Turkey). This article presents the results of a survey carried out in Poland, in the winter term between November 2020 and January 2021. A total of 125 Polish residents (59 women, 65 men, one person did not wish to specify gender) participated in the survey. A variety of data was collected on the respondents and their assessments as well as on their satisfaction with day- and artificial lighting in residential living spaces. The results from questionnaires were analyzed with STATISTICA 13.3. Descriptive statistics and Spearman rank order correlations were adopted to identify the light-related aspects, lighting patterns, and respondents’ perception of day- and artificial lighting conditions in living areas. The results revealed that satisfaction with daylighting in the living area, both in summer and winter, was significantly correlated with daylighting level, daylighting uniformity, sunlight exposure and view-out. The results also revealed that satisfaction with artificial lighting was significantly correlated with artificial lighting level, artificial lighting uniformity and color rendering. The results provide valuable information on lighting and factors that influence the luminous environment in residential living spaces.
Go to article

Authors and Affiliations

Piotr Pracki
1
ORCID: ORCID
Rengin Aslanoglu
2
Jan K. Kazak
2
ORCID: ORCID
Begüm Ulusoy
3
Sepideh Yekanialibeiglou
4

  1. Warsaw University of Technology, Electrical Power Engineering Institute, Division of Lighting Technology, Warsaw, Poland
  2. Wrocław University of Environmental and Life Sciences, Institute of Spatial Management, Wrocław, Poland
  3. University of Lincoln, Interior Architecture and Design, School of Design, Lincoln, UK
  4. Bilkent University, Department of Interior Architecture and Environmental Design, Faculty of Art, Design and Architecture, Ankara, Turkey

This page uses 'cookies'. Learn more