Distillation boundaries originate from saddle azeotropes, dividing the composition space into distillation regions. In heterogeneous mixtures distilled in packed columns, distillation regions overlap. The common area of distillation regions is parametrically sensitive, and it determines the possibilities of crossing (at a finite reflux) the distillation boundaries defined for a total reflux or reboil ratio. This work is an extended research of the paper (Królikowski et al., 2011) conducted to scrutinize whether the distillation regions overlapped in heteroazeotropic systems distilled in staged columns. Presented studies were performed by finding such composition points of the products, for which the rectifying profiles of staged columns were ended in different distillation regions. Calculations were executed for the heterogeneous mixture classified under Serafimov's topological class as 3.1-2: ethanol - benzene - water. Distillation regions for staged columns were found to overlap each other in the heterogeneous systems. As a result, their common part was parametrically sensitive.
The article concerns fly ashes generated from the combustion of hard coal and deposited on landfills. Investigation results describing fly ash taken from a combustion waste landfill are presented in the article. The investigation results indicate a possibility for combusting the coal reclaimed by separation from the fly ash and utilizing the remaining fly ash fractions.
Tests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3 presented for 10% O2 content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.
The objective of this study is to investigate the change in partition coefficient with a change in the concentration of the solute in a liquid system consisting of two relatively immiscible solvents. To investigate the changes in the partition coefficients, the data of the partition coefficients at infinite dilution and the ternary Liquid-Liquid Equilibrium (LLE) data at finite concentrations of the solute should be consistent. In this study, 29 ternary systems that are found in literature and for which the partition coefficients at infinite dilution and the ternary LLE data cannot be predicted accurately by the universal quasi-chemical (UNIQUAC) model are identified. On the basis of this model, some consistent and inconsistent ternary systems are introduced. Three inconsistent systems, namely hexane-butanol-water, CCl4 (carbon tetrachloride)-PA (propanoic acid)-water, and hexane-PA-water, are chosen for detailed analysis in this study. The UNIQUAC activity coefficient model is used to represent these data over a range of concentrations. The results show large errors, exhibiting the inability of this model to correlate the data. Furthermore, some ternary systems in which cross behavior of solutes between two phases observed are identified.
The article describes the testing of four selected samples of limestone originating from four commercially exploited deposits. The tests of sorbents included a physicochemical analysis and calcination in different atmospheres. The main aim of the tests was to determine the possibilities for using limestone during combustion in oxygen-enriched atmospheres. Tests in a synthetic flue gas composition make it possible to assess the possibility of CaCO3 decomposition in atmospheres with an increased CO2 concentration.
This paper presents an analysis of the corrosion hazard in the burner belt area of waterwalls in pulverised fuel (PF) boilers that results from low-NOx combustion. Temperature distributions along the waterwall tubes in subcritical (denoted as SUB) and supercritical (SUP) boilers were calculated and compared. Two hypothetical distributions of CO concentrations were assumed in the near-wall layer of the flue gas in the boiler furnace, and the kinetics of the waterwall corrosion were analysed as a function of the local temperature of the tubes. The predicted rate of corrosion of the boiler furnace waterwalls in the supercritical boilers was compared with that of in the subcritical boilers.
The motion of submicron particles involves the deterministic terms resulting from the aerodynamic convection and/or electrostatic attraction, and the stochastic term from the thermal displacement of particles. The Langevin equation describes such behavior. The Brownian dynamics algorithm was used for integration of the Langevin equation for the calculation of the single fiber deposition efficiency. Additionally the deterministic and stochastic of the particle motion were derived, using the Lagrangian and Eulerian approaches of particle movement and balance, for the calculation of the single fiber deposition efficiency due to both mechanisms separately. Combination of the obtained results allows us for calculation of the coupling effect of inertia and interception with the Brownian diffusion in a form of correlation. The results of calculation show that the omitting of the coupling effect of particular mechanism and using the simple additive rule for determination of the single fiber deposition efficiency introduces significant error, especially for particles with diameter below 300 nm.
This paper presents a method of describing an airlift bioreactor, in which biodegradation of a carbonaceous substrate described by single-substrate kinetics takes place. Eight mathematical models based on the assumption of liquid plug flow and axial dispersion flow through the riser and the downcomer in the reactor were proposed. Additionally, the impact of degassing zone with assumed complete mixing on the obtained results was analyzed. Calculations were performed for two representative hydrodynamic regimes of reactor operation, i.e. with the presence of gas bubbles only within the riser and for complete gas circulation. The conclusions related to the apparatus design and process performance under sufficient aeration of the reaction mixture were drawn on the basis of the obtained results.