This paper describes a new and efficient method for quantifying and detection of the source of distortion caused by a single customer in a case when many other customers exist in a power grid. It is based on measuring distortion power, a component of apparent power that only exists with a nonlinear load. Different definitions for distortion power calculation are investigated. All these definitions show without doubt that the proposed method is feasible. Moreover, this method allows to develop fair and reliable billing schemes for controlling harmonic pollution. Measurement and simulation results confirm the effectiveness and applicability of the method. The proposed solution is suitable for software/hardware upgrade of existing electronic power-meters.
Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.
A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.
Time domain analysis is used to determine whether A/D converters that employ higher order sigma-delta modulators, widely used in digital acoustic systems, have superior performance over classical synchronous A/D converters with modulators of first order when taking into account their important metrological property which is the magnitude of the quantization error. It is shown that the quantization errors of delta-sigma A/D converters with higher order modulators are exactly on the same level as for converters with a first order modulator.
Materials and their development process are highly dependent on proper experimental testing under wide range of loading within which high-strain rate conditions play a very significant role. For such dynamic loading Split Hopkinson Pressure Bar (SHPB) is widely used for investigating the dynamic behavior of various materials. The presented paper is focused on the SHPB impulse measurement process using experimental and numerical methods. One of the main problems occurring during tests are oscillations recorded by the strain gauges which adversely affect results. Thus, it is desired to obtain the peak shape in the incident bar of SHPB as “smooth” as possible without any distortions. Such impulse characteristics can be achieved using several shaping techniques, e.g. by placing a special shaper between two bars, which in fact was performed by the authors experimentally and subsequently was validated using computational methods.
A method for evaluating the dynamic characteristics of force transducers against small and short-duration impact forces is developed. In this method, a small mass collides with a force transducer and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used to achieve linear motion with sufficiently small friction acting on the mass, which is the moving part of the bearing. Small and short-duration impact forces with a maximum impact force of approximately 5 N and minimum half-value width of approximately 1 ms are applied to a force transducer and the impulse responses are evaluated.
The article presents results of comparative tests performed to verify the conformity of geometric deviation measurements of a crankshaft carried out at a test bed equipped with a system of elastic support with measurements adopted as reference values. A number of simulation tests were carried out with varied shaft support conditions using the proposed measuring system. The selection criteria were established for support parameters. Meeting these criteria guarantees that shaft elastic deflections and strains are eliminated. Consequently, such strains will not affect the estimation of geometrical deviations of the measured object. The comparative evaluation measurement of roundness profiles and values of roundness deviations of main crankshaft bearing journals of a marine medium speed engine was performed using a correlation calculus. The results have revealed high conformity of both determined roundness deviation values and measured profiles compared to the reference ones.
The designing process of high resolution time interval measurement systems creates many problems that need to be eliminated. The problems are: the latch error, the nonlinearity conversion, the different duty cycle coefficient of the clock signal, and the clock signal jitter. Factors listed above affect the result of measurement. The FPGA (Field Programmable Gate Array) structure also imposes some restrictions, especially when a tapped delay line is constructed. The article describes the high resolution time-to-digital converter, implemented in a FPGA structure, and the types of errors that appear there. The method of minimization and processing of data to reduce the influence of errors on the measurement is also described.
Screw axis measurement methods obtain a precise identification of the physical reality of the industrial robots’ geometry. However, these methods are in a clear disadvantage compared to mathematical optimisation processes for kinematical parameters. That’s because mathematical processes obtain kinematical parameters which best reduce the robot errors, despite not necessarily representing the real geometry of the robot. This paper takes the next step at the identification of a robot’s movement from the identification of its real kinematical parameters for the later study of every articulation’s rotation. We then obtain a combination of real kinematic and dynamic parameters which describe the robot’s movement, improving its precision with a physical understanding of the errors.
The paper presents a new method for simultaneous tracking of varying grid impedance and its uncertainty bounds. Impedance tracking consists of two stages. In the first stage, the actual noise estimate is obtained from least squares (LS) residua. In the second stage, the noise covariance matrix is approximated with the use of residual information. Then weighted least squares (WLS) method is applied in order to estimate impedance and background voltage. Finally uncertainty bounds for impedance estimation are computed. The robustness of the method has been verified using simulated signals. The proposed method has been compared to sliding LS. The results have shown, that the method performs much better than the LS for all considered cases, even in the presence of significant background voltage variations.
The paper analyzes the phenomenon of heat transfer and its inertia in solids. The influence of this effect on the operation of an integrated circuit is described. The phenomenon is explained using thermal analogy implemented in the Spice environment by an R-C thermal model. Results from the model are verified by some measurements with a chip designed in CMOS 0.7 μm (5 V) technology. The microcontroller-based measurement system structure and experiment results are described.
This paper describes the design and test of a new high-current electronic current transformer based on a Rogowski coil. For better performances, electronic current transformers are used to replace conventional electro-magnetic inductive current transformers based on ferromagnetic cores and windings to measure high-current on the high voltage distribution grids. The design of a new high-current electronic current transformer is described in this paper. The principal schemes of the prototype and partial evaluation results are presented. Through relative tests it is known that the prototype has a wide dynamic range and frequency band, and it can allow high accuracy measurements.
In a dynamic machining process, distortion in surface irregularity is a very complex phenomenon. Surface irregularities form a periodic representation of the tool profile with various kinds of disturbance in a broad range of changes in the height and length of the profile. To discern these irregularity disturbances, interactions of the tool in the form of changes perpendicular and parallel relative to the workpiece were analyzed and simulated. The individual kinds of displacement of the tool relative to the workpiece introduce distortions in the changes of height and length. These changes are weakly represented in standard height and length irregularity parameters and their discernment has been found through amplitude-frequency functions.
In this paper, an analysis of various factors affecting machined surface texture is presented. The investigation was focused on ball end mill inclination against the work piece (defined by surface inclination angle a. Surface roughness was investigated in a 3D array, and measurements were conducted parallel to the feed motion direction. The analysis of machined surface irregularities as a function of frequency (wavelength A), on the basis of the Power Density Spectrum - PDS was also carried out. This kind of analysis is aimed at valuation of primary factors influencing surface roughness generation as well as its randomness. Subsequently, a surface roughness model including cutter displacements was developed. It was found that plain cutting with ball end mill (surface inclination angle a= 0°) is unfavorable from the point of view of surface roughness, because in cutter’s axis the cutting speed vc ~ 0 m/min. This means that a cutting process does not occur, whereas on the machined surface some characteristics marks can be found. These marks do not appear in case of a* 0°, because the cutting speed vc * 0 on the fill I length of the active cutting edge and as a result, the machined surface texture is more homogenous. Surface roughness parameters determined on the basis of the model including cutter displacements are closer to experimental data for cases with inclination angles a* 0°, in comparison with those determined for plain cutting (a= 0°). It is probably caused by higher contribution in surface irregularities generation of plastic and elastic deformations cumulated near the cutter’s free end than kinematic and geometric parameters, as well as cutter displacements.
The article shows the methodology and calculation procedures based on Lagrange polynomial interpolation which were used to determine standard performance characteristics of the Polish production engine, type ANDORIA 4CTi90-1BE6. They allow to simplify the experimental research by maintaining a minimum number of measurement points and estimating the remaining data in an analytical way. The methods presented are convenient when it comes to the practical side because they eliminate the need for exploration of mathematical equations describing the various curves, which can be cumbersome and time consuming in the case of nonautomated accounts. The results of analysis were applied to actual experimental results, indicating sufficient accuracy of the resulting approximations. As a result, procedures may be used in bench testing of a similar profile, especially with repeated cycles of the experiment, such as optimization of operating parameters of combustion engines.
Journal | Publisher | ISSN |
IOP Publishing | 0026-1394 | |
IEEE | 0018-9456 | |
Elsevier | 0263-2241 | |
IOP Publishing | 0957-0233 | |
Metrology and Measurement Systems | PAS | 0860-8229 |
IOP Publishing | 0034-6748 | |
IEEE | 1557-9948 | |
IET | 1751-8822 | |
SISSA, IOP Publishing | 1748-0221 | |
Walter de Gruyter | 1335-8871 | |
IEEE | 1094-6969 | |
Bulletin of the Polish Academy of Sciences: Technical Sciences | PAS | 2300-1917 |
PAS | 1896-3757 | |
IEEE | 1558-1748 | |
MDPI | 1424-8220 |