A new time interval/frequency generator with a jitter below 5 ps is described. The time interval generation mechanism is based on a phase shifting method with the use of a precise DDS synthesizer. The output pulses are produced in a Spartan-6 FPGA device, manufactured by Xilinx in 45 nm CMOS technology. Thorough tests of the phase shifting in a selected synthesizer are performed. The time interval resolution as low as 0.3 ps is achieved. However, the final resolution is limited to 500 ps to maximize precision. The designed device can be used as a source of high precision reference time intervals or a highly stable square wave signal of frequency up to 50 MHz.
When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.
Effectiveness of operation of a weapon stabilization system is largely dependent on the choice of a sensor, i.e. an accelerometer. The paper identifies and examines fundamental errors of piezoelectric accelerometers and offers measures for their reduction. Errors of a weapon stabilizer piezoelectric sensor have been calculated. The instrumental measurement error does not exceed 0.1 × 10−5 m/s2. The errors caused by the method of attachment to the base, different noise sources and zero point drift can be mitigated by the design features of piezoelectric sensors used in weapon stabilizers.
Minimally invasive procedures for the kidney tumour removal require a 3D visualization of topological relations between kidney, cancer, the pelvicalyceal system and the renal vascular tree. In this paper, a novel methodology of the pelvicalyceal system segmentation is presented. It consists of four following steps: ROI designation, automatic threshold calculation for binarization (approximation of the histogram image data with three exponential functions), automatic extraction of the pelvicalyceal system parts and segmentation by the Locally Adaptive Region Growing algorithm. The proposed method was applied successfully on the Computed Tomography database consisting of 48 kidneys both healthy and cancer affected. The quantitative evaluation (comparison to manual segmentation) and visual assessment proved its effectiveness. The Dice Coefficient of Similarity is equal to 0.871 ± 0.060 and the average Hausdorff distance 0.46 ± 0.36 mm. Additionally, to provide a reliable assessment of the proposed method, it was compared with three other methods. The proposed method is robust regardless of the image acquisition mode, spatial resolution and range of image values. The same framework may be applied to further medical applications beyond preoperative planning for partial nephrectomy enabling to visually assess and to measure the pelvicalyceal system by medical doctors.
Precise measurement of rail vehicle velocities is an essential prerequisite for the implementation of modern train control systems and the improvement of transportation capacity and logistics. Novel eddy current sensor systems make it possible to estimate velocity by using cross-correlation techniques, which show a decline in precision in areas of high accelerations. This is due to signal distortions within the correlation interval. We propose to overcome these problems by employing algorithms from the field of dynamic programming. In this paper we evaluate the application of correlation optimized warping, an enhanced version of dynamic time warping algorithms, and compare it with the classical algorithm for estimating rail vehicle velocities in areas of high accelerations and decelerations.
Ionizing radiation applied on food eliminates harmful microorganisms, prevents sprouting and delays ripening. All methods for detection of irradiated food are based on physical, chemical, biological or microbiological changes caused by the treatment with ionizing radiation. When minerals are exposed to ionizing radiation, they accumulate radiation energy and store it in the crystal lattice, by which some electrons remain trapped in the lattice. When these minerals are exposed to optical stimulation, trapped electrons are released. The phenomenon, called optically stimulated luminescence or photostimulated luminescence, occurs when released electrons recombine with holes from luminescence centers in the lattice, resulting in emission of light with certain wavelengths.
In this paper, the results of measurements performed on seven different samples of herbs and spices are presented. In order to make a comparison between luminescence signals from samples treated with different doses, unirradiated samples are treated with Co-60 with doses of 1 kGy, 5 kGy and 10 kGy. In all cases it was shown that the higher the applied dose, the higher the luminescence signal.
Autocorrelation of signals and measurement data makes it difficult to estimate their statistical characteristics. However, the scope of usefulness of autocorrelation functions for statistical description of signal relation is narrowed down to linear processing models. The use of the conditional expected value opens new possibilities in the description of interdependence of stochastic signals for linear and non-linear models. It is described with relatively simple mathematical models with corresponding simple algorithms of their practical implementation.
The paper presents a practical model of exponential autocorrelation of measurement data and a theoretical analysis of its impact on the process of conditional averaging of data. Optimization conditions of the process were determined to decrease the variance of a characteristic of the conditional expected value. The obtained theoretical relations were compared with some examples of the experimental results.
The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.
Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.
With development of medical diagnostic and imaging techniques the sparing surgeries are facilitated. Renal cancer is one of examples. In order to minimize the amount of healthy kidney removed during the treatment procedure, it is essential to design a system that provides three-dimensional visualization prior to the surgery. The information about location of crucial structures (e.g. kidney, renal ureter and arteries) and their mutual spatial arrangement should be delivered to the operator. The introduction of such a system meets both the requirements and expectations of oncological surgeons. In this paper, we present one of the most important steps towards building such a system: a new approach to kidney segmentation from Computed Tomography data. The segmentation is based on the Active Contour Method using the Level Set (LS) framework. During the segmentation process the energy functional describing an image is the subject to minimize. The functional proposed in this paper consists of four terms. In contrast to the original approach containing solely the region and boundary terms, the ellipsoidal shape constraint was also introduced. This additional limitation imposed on evolution of the function prevents from leakage to undesired regions. The proposed methodology was tested on 10 Computed Tomography scans from patients diagnosed with renal cancer. The database contained the results of studies performed in several medical centers and on different devices. The average effectiveness of the proposed solution regarding the Dice Coefficient and average Hausdorff distance was equal to 0.862 and 2.37 mm, respectively. Both the qualitative and quantitative evaluations confirm effectiveness of the proposed solution.
We present an alternative method to detect and measure the concentration changes in liquid solutions. The method uses Digital Holographic Interferometry (DHI) and is based on measuring refractive index variations. The first hologram is recorded when a wavefront from light comes across an ordinary cylindrical glass container filled with a liquid solution. The second hologram is recorded after slight changing the liquid’s concentration. Differences in phase obtained from the correlation of the first hologram with the second one provide information about the refractive index variation, which is directly related to the changes in physical properties related to the concentration. The method can be used − with high sensitivity, accuracy, and speed − either to detect adulterations or to measure a slight change of concentration in the order of 0.001 moles which is equivalent to a difference of 0.003 g of sodium chloride in solutions. The method also enables to measure and calculate the phase difference among each pixel of two samples. This makes it possible to generate a global measurement of the phase difference of the entire sensed region.
The paper analyses the distorted data of an electronic nose in recognizing the gasoline bio-based additives. Different tools of data mining, such as the methods of data clustering, principal component analysis, wavelet transformation, support vector machine and random forest of decision trees are applied. A special stress is put on the robustness of signal processing systems to the noise distorting the registered sensor signals. A special denoising procedure based on application of discrete wavelet transformation has been proposed. This procedure enables to reduce the error rate of recognition in a significant way. The numerical results of experiments devoted to the recognition of different blends of gasoline have shown the superiority of support vector machine in a noisy environment of measurement.
The integrated Singular Value Decomposition (SVD) and Unscented Kalman Filter (UKF) method can recursively estimate the attitude and attitude rates of a nanosatellite. At first, Wahba’s loss function is minimized using the SVD and the optimal attitude angles are determined on the basis of the magnetometer and Sun sensor measurements. Then, the UKF makes use of the SVD’s attitude estimates as measurement results and provides more accurate attitude information as well as the attitude rate estimates. The elements of “Rotation angle error covariance matrix” calculated for the SVD estimations are used in the UKF as the measurement noise covariance values. The algorithm is compared with the SVD and UKF only methods for estimating the attitude from vector measurements. Possible algorithm switching ideas are discussed especially for the eclipse period, when the Sun sensor measurements are not available.
The theoretical aspects of a new type of piezo-resistive pressure sensors for environments with rapidly changing temperatures are presented. The idea is that the sensor has two identical diaphragms which have different coefficients of linear thermal expansion. Therefore, when measuring pressure in environments with variable temperature, the diaphragms will have different deflection. This difference can be used to make appropriate correction of the sensor output signal and, thus, to increase accuracy of measurement. Since physical principles of sensors operation enable fast correction of the output signal, the sensor can be used in environments with rapidly changing temperature, which is its essential advantage. The paper presents practical implementation of the proposed theoretical aspects and the results of testing the developed sensor.
A single photovoltaic panel under uniform illumination has only one global maximum power point, but the same panel in irregularly illuminated conditions can have more maxima on its power-voltage curve. The irregularly illuminated conditions in most cases are results of partial shading. In the work a single short pulse of load is used to extract information about partial shading. This information can be useful and can help to make some improvements in existing MPPT algorithms. In the paper the intrinsic capacitance of a photovoltaic system is used to retrieve occurrence of partial shading.
In this paper a programmable input mode instrumentation amplifier (IA) utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA), which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC). IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.
Determination of the physico-chemical interactions between liquid and solid substances is a key technological factor in many industrial processes in metallurgy, electronics or the aviation industry, where technological processes are based on soldering/brazing technologies. Understanding of the bonding process, reactions between materials and their dynamics enables to make research on new materials and joining technologies, as well as to optimise and compare the existing ones. The paper focuses on a wetting force measurement method and its practical implementation in a laboratory stand – an integrated platform for automatic wetting force measurement at high temperatures. As an example of using the laboratory stand, an analysis of Ag addition to Cu-based brazes, including measurement of the wetting force and the wetting angle, is presented.
Journal | Publisher | ISSN |
IOP Publishing | 0026-1394 | |
IEEE | 0018-9456 | |
Elsevier | 0263-2241 | |
IOP Publishing | 0957-0233 | |
Metrology and Measurement Systems | PAS | 0860-8229 |
IOP Publishing | 0034-6748 | |
IEEE | 1557-9948 | |
IET | 1751-8822 | |
SISSA, IOP Publishing | 1748-0221 | |
Walter de Gruyter | 1335-8871 | |
IEEE | 1094-6969 | |
Bulletin of the Polish Academy of Sciences: Technical Sciences | PAS | 2300-1917 |
PAS | 1896-3757 | |
IEEE | 1558-1748 | |
MDPI | 1424-8220 |