A mode-locked Tm3+-doped fibre laser and amplifier operating at a central wavelength of 1994.3 nm is demonstrated. A thulium oscillator is passively mode-locked by a semiconductor saturable absorber mirror to generate an average power of 17 mW at a fundamental repetition rate of 81 MHz in a short linear cavity. This 2-µm laser train is amplified to an average power to 20.26 W by two double-clad thulium-doped allfibre amplifiers. The pulse energy, duration and peak power is 250 nJ, 23 ps and 9.57 kW, respectively. This represents one of the highest values of average power at ∼ 2-µm-wavelength for picosecond thulium-doped fibre lasers and amplifiers. The performance of the laser system is described in details.
In the paper there are presented tools for structural modelling of throttle diagrams that are developed as a basis to building transducers used for measuring fluid parameters. The definitions of throttle diagrams are improved and their classification is developed. Dependences are obtained to calculate the number of measuring channels in a throttle diagram and the number of possible variants of measuring transducers using the combinatory apparatus. A procedure for mathematical description of throttle diagrams in the form of graphs is proposed which makes it possible to obtain all diagrams with different measuring channels on the basis of certain throttle diagram. The model is developed in the form of a graph. A schematic diagram and a mathematical model of a transducer measuring physical and mechanical parameters of Bingham plastic fluid are developed based on a throttle diagram.
A new method of noise generation based on software implementation of a 7-bit LFSR based on a common polynomial PRBS7 using microcontrollers equipped with internal ADCs and DACs and a microcontroller noise generator structure are proposed in the paper. Two software applications implementing the method: written in ANSI C and based on the LUT technique and written in AVR Assembler are also proposed. In the method the ADC results are used to reseed the LFSR after its each full work cycle, what improves randomness of generated data, which results in a greater similarity of the generated random signal to white noise, what was confirmed by the results of experimental research. The noise generator uses only the internal devices of the microcontroller, hence the proposed solution does not introduce hardware redundancy to the system.
Knowledge of gravitational acceleration in metrology is required for traceable force and pressure calibrations, furthermore the redefinition of the SI base unit of kilogram requires absolute accomplishment of the gravitational acceleration. A direct free-fall gravimeter is developed using pneumatic grippers for test mass handling and a semi-rotary actuator for repositioning, i.e. automated re-launching. The catch and release system is powered by compressed air. This eliminates electric interferences around the test mass. A simplified method of signal capturing and processing is used on the designed gravimeter. A digital frequency trigger is implemented in the post processing algorithms to ensure that the signals are analysed from the identical effective height. The experimental results measured the site gravitational acceleration of 9.786043 ms−2 with a statistical uncertainty of ±29 µs −2.
This paper presents two methods for evaluation of the effective wavenumber of nearly-Gaussian beams in laser interferometers that can be used for determination of a so called diffraction correction in absolute gravimeters. The first method, that can be simply used in situ, is an empirical procedure based on the evaluation of the variability of g measurements against the amount of light limited by an iris diaphragm and transmitted to a photodetector. However, precision of this method depends on the beam quality similarly as in the case of the conventional method based on measurement of a beam width. The second method, that is more complex, is based on beam profiling in various distances and on calculation of the effective wavenumber using the second spatial derivative of a non-ideal beam field envelope. The measurement results achieved by both methods are presented on an example of two absolute gravimeters and the determined diffraction corrections are compared with the results obtained by measurements of beam width. Agreement of methods within about 1 mGal have been obtained with average diffraction corrections slightly exceeding +2 mGal for three FG5(X) gravimeter configurations.
References
[1]Monchalin, J.P., Kelly, M.J., Thomas, J.E., Kurnit, N.A., Szöke, A., Zernike, F., Lee, P.H., Javan, A.(1981). Accurate laser wavelength measurement with a precision two-beam scanning Michelson in-terferometer.Appl Opt., 20(5), 736–57.
[2]Sasso, C.P., Massa, E., and Mana, G. (2016). Diffraction effects in length measurements by laserinterferometry.Optics Express, 24(6), 6522–6531. DOI: 10.1364/OE.24.006522
[3]Niebauer, T.M., Sasagawa, G.S., Faller, J.E., Hilt, R., Klopping, F. (1995). A new generation of abso-lute gravimeters.Metrologia, 32, 159–180.
[4]vanWestrum, D., Niebauer, T.M. (2003). The diffraction correction for absolute gravimeters.Metrologia, 40, 258–263.
[5]Robertsson, L. (2007). On the diffraction correction in absolute gravimetry.Metrologia, 44, 35–39.
This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1.1 · 10−6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.
The field of mechanical manufacturing is becoming more and more demanding on machining accuracy. It is essential to monitor and compensate the deformation of structural parts of a heavy-duty machine tool. The deformation of the base of a heavy-duty machine tool is an important factor that affects machining accuracy. The base is statically indeterminate and complex in load. It is difficult to reconstruct deformation by traditional methods. A reconstruction algorithm for determining bending deformation of the base of a heavy-duty machine tool using inverse Finite Element Method (iFEM) is presented. The base is equivalent to a multi-span beam which is divided into beam elements with support points as nodes. The deflection polynomial order of each element is analysed. According to the boundary conditions, the deformation compatibility conditions and the strain data measured by Fiber Bragg Grating (FBG), the deflection polynomial coefficients of a beam element are determined. Using the coordinate transformation, the deflection equation of the base is obtained. Both numerical verification and experiment were carried out. The deflection obtained by the reconstruction algorithm using iFEM and the actual deflection measured by laser displacement sensors were compared. The accuracy of the reconstruction algorithm is verified.
Measurement data obtained from Weigh-in-Motion systems support protection of road pavements from the adverse phenomenon of vehicle overloading. For this protection to be effective, WIM systems must be accurate and obtain a certificate of metrological legalization. Unfortunately there is no legal standard for accuracy assessment of Weigh-in-Motion (WIM) systems. Due to the international range of road transport, it is necessary to standardize methods and criteria applied for assessing such systems’ accuracy. In our paper we present two methods of determining accuracy of WIM systems. Both are based on the population of weighing errors determined experimentally during system testing. The first method is called a reliability characteristic and was developed by the authors. The second method is based on determining boundaries of the tolerance interval for weighing errors. Properties of both methods were assessed on the basis of simulation studies as well as experimental results obtained from a 16-sensor WIM system.
The task of generating fast and accurate three-dimensional (3D) models of objects or scenes through a sequence of non-calibrated images is an active field of research. The recent development in algorithm optimization has resulted in many automatic solutions that can provide an accurate 3D model from texture-full objects. Structure-from-motion (SfM) is an image-based method that uses discriminative point-based feature identifier, such as SIFT, to locate feature points in the images. This method faces difficulties when presented with the objects made of homogenous or texture-less surfaces. To reconstruct such surfaces a well-known technique is to apply an artificial variety by covering the surface with a random texture pattern prior to the image capturing process. In this work, we designed three series of image patterns which are tested based on the contrast and density ratio which increases from the first to the last pattern within the same series. The performance of the patterns is evaluated by reconstructing the surface of a texture-less object and comparing it with the true data. Using the best-found patterns from the experiments, a 3D model of a Moai statue is reconstructed. The experimental results demonstrate that the density and structure of a pattern highly affects the quality of the reconstruction.
Microwave frequency detectors enable immediate determination of an unknown microwave signal frequency. Measurement is possible if the output characteristic of a frequency detector is unequivocal in a selected band of operation. The paper presents a method for obtaining unequivocal output characteristics for a given band of frequency detector operation.
Terrestrial laser scanning (TLS) is one of the instruments for remote detection of damage of structures (cavities, cracks) which is successfully used to assess technical conditions of building objects. Most of the point clouds analysis from TLS relies only on spatial information (3D–XYZ). This study presents an approach based on using the intensity value as an additional element of information in diagnosing technical conditions of architectural structures. The research has been carried out in laboratory and field conditions. Its results show that the coefficient of laser beam reflectance in TLS can be used as a supplementary source of information to improve detection of defects in constructional objects.
A concept of a highly sensitive and fast-response airborne optoelectronic hygrometer, based on the absorption spectroscopy with laser light tuned to an intense ro-vibronic absorption line of H2O in the 1391– 1393 nm range is presented. The target application of this study is airborne atmospheric measurements, in particular at the top of troposphere and in stratosphere. The cavity ring-down spectroscopy was used to achieve high sensitivity. In order to avoid interference of the results by water desorbed from the instrument walls, the open-path solution was applied. Tests of the instrument, performed in a climatic chamber, have shown some advantages of this concept over typical hygrometers designed for similar applications.
Journal | Publisher | ISSN |
IOP Publishing | 0026-1394 | |
IEEE | 0018-9456 | |
Elsevier | 0263-2241 | |
IOP Publishing | 0957-0233 | |
Metrology and Measurement Systems | PAS | 0860-8229 |
IOP Publishing | 0034-6748 | |
IEEE | 1557-9948 | |
IET | 1751-8822 | |
SISSA, IOP Publishing | 1748-0221 | |
Walter de Gruyter | 1335-8871 | |
IEEE | 1094-6969 | |
Bulletin of the Polish Academy of Sciences: Technical Sciences | PAS | 2300-1917 |
PAS | 1896-3757 | |
IEEE | 1558-1748 | |
MDPI | 1424-8220 |