Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures. The algorithm is based on sparse updates of antenna sensitivities involving various methods that include the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference algorithm. Experimental validation is also provided.
A new attack against the Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system is studied with unknown parasitic DC-voltage sources at both Alice’s and Bob’s ends. This paper is the generalization of our earlier investigation with a single-end parasitic source. Under the assumption that Eve does not know the values of the parasitic sources, a new attack, utilizing the current generated by the parasitic dc-voltage sources, is introduced. The attack is mathematically analyzed and demonstrated by computer simulations. Simple defense methods against the attack are shown. The earlier defense method based solely on the comparison of current/voltage data at Alice’s and Bob’s terminals is useless here since the wire currents and voltages are equal at both ends. However, the more expensive version of the earlier defense method, which is based on in-situ system simulation and comparison with measurements, works efficiently.
Rotation modulation can significantly improve the navigation accuracies of an inertial navigation system (INS) and a strap-down configuration dominating in this type of INS. However, this style of construction is not a good scheme since it has no servo loop to counteract a vehicle manoeuvre. This paper proposes a rotary upgrading method for a rotational INS based on an inertially stabilized platform. The servo control loop is reconstructed on a four-gimbal platform, and it has the functions of providing both a level stability relative to the navigation frame and an azimuth rotation at a speed of 1:2◦/s. With the platform’s rotation, the observability and the convergence speed of the estimation for the initial alignment can be improved, as well as the biases of the gyroscopes and accelerometers be modulated into zero-mean periodic values. An open-loop initial alignment method is designed, and its detailed algorithms are delivered. The experiment result shows that the newly designed rotational INS has reached an accuracy of 0.38 n mile/h (CEP, circular error probable). The feasibility and engineering applicability of the designed scheme have been validated.
The paper presents a novel implementation of a time-to-digital converter (TDC) in field-programmable gate array (FPGA) devices. The design employs FPGA digital signal processing (DSP) blocks and gives more than two-fold improvement in mean resolution in comparison with the common conversion method (carry chain-based time coding line). Two TDCs are presented and tested depending on DSP configuration. The converters were implemented in a Kintex-7 FPGA device manufactured by Xilinx in 28 nm CMOS process. The tests performed show possibilities to obtain mean resolution of 4.2 ps but measurement precision is limited to at most 15 ps mainly due to high conversion nonlinearities. The presented solution saves FPGA programmable logic blocks and has an advantage of a wider operation range when compared with a carry chain-based time coding line.
Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles.Without these properties, anywalking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering a path plan ormovement parameters such as speed, step length or step height, it is important to choose the most suitable variables to sustain long battery life and to reach the objective or complete the task successfully.We change the settings of a hexapod robot leg trajectory for overcoming small terrain irregularities by optimizing consumed energy and leg trajectory during each leg transfer. The trajectory settings are implemented as a part of hexapod robot simulation model and tested through series of experiments with various terrains of differing complexity and obstacles of various sizes. Our results show that the proposed energy-efficient trajectory transformation is an effective method for minimizing energy consumption and improving overall performance of a walking robot.
The measurement of frequency characteristics, like magnitude and phase, related to a specific transfer function of DC–DC converters, can be a difficult task – especially when the measured signal approaches the boundary of a small-signal model validity (i:e. 1/3 of the switching frequency fS). It is hard to find a paper where authors mention the measurement techniques they use to draw frequency characteristics. Meanwhile the presence of noise in the output signal does not enable to directly measure the gain and the phase shift between the input and output signals. In such situations additional analysis is required in order to achieve a reliable result. This paper contains a description of a few methods that can be used to analyse measured signals in order to determine the gain and the phase shift of a specific transfer function. They enable to verify mathematical models in a wide range of frequencies (up to 1/3 fS). The methods use signals measured in the time domain and can be implemented in mathematical software such as Matlab or Scilab.
As a result of the development of modern vehicles, even higher accuracy standards are demanded. As known, Inertial Navigation Systems have an intrinsic increasing error which is the main reason of using integrating navigation systems, where some other sources of measurements are utilized, such as barometric altimeter due to its high accuracy in short times of interval. Using a Robust Kalman Filter (RKF), error measurements are absorbed when a Fault Tolerant Altimeter is implemented. During simulations, in order to test the Nonlinear RKF algorithm, two kind of measurement malfunction scenarios have been taken into consideration; continuous bias and measurement noise increment. Under the light of the results, some recommendations are proposed when integrated altimeters are used.
The paper presents research on the capability of the residual magnetic field (RMF) measurement system to be applied to the railway inspection for the early non-destructive detection of defects. The metal magnetic memory (MMM) phenomena are analysed using normal component Hy of self-magnetic flux leakage (SMFL), and its tangential component Hx, as well as their respective gradients. The measurement apparatus is described together with possible factors that may affect the results of measurement. The Type A uncertainty estimation and repeatability tests were performed. The results demonstrate that the system may be successfully applied to detection of head check flaws.
The non-contact current measurement method with magnetic sensors has become a subject of research. Unfortunately, magnetic sensors fail to distinguish the interested magnetic field from nearby interference and suffer from gauss white noise due to the intrinsic noise of the sensor and external disturbance. In this paper, a novel adaptive filtering-based current reconstruction method with a magnetic sensor array is proposed. Interference-rejection methods based on two classic algorithms, the least-mean-square (LMS) and recursive-least-square (RLS) algorithms, are compared when used in the parallel structure and regular triangle structure of three-phase system. Consequently, the measurement range of RLS-based algorithm is wider than that of LMS-based algorithm. The results of carried out simulations and experiments show that RLS-based algorithms can measure currents with an error of around 1%. Additionally, the RLS-based algorithm can filter the gauss white noise whose magnitude is within 10% of the linear magnetic field range of the sensor.
In this paper the current status of microplasma devices and systems made in the LTCC technology is presented. The microplasma characteristics and applications are described.We discuss the properties of the LTCC materials, that are necessary for reliable operation of the sources. This material is well known for its good reliability and durability in harsh conditions. Still, only a few examples of such microplasma sources are described. Some of them have been developed by the authors and successfully used for chemical analysis and synthesis.
On the basis of induction heating, radiation heating and liquid nitrogen refrigeration, high-temperature, medium-temperature, normal-temperature and low-temperature heating/refrigeration furnaces were designed, respectively. An apparatus with a wide temperature range and high accuracy applied to test oxidation resistance of materials has been developed based on the thermogravimetric method and the heat transfer principle. The apparatus consists of four heating/cooling systems, a specimen fixture positioning unit, a laser positioning unit, vertical and horizontal moving guide rails, and a high-precision weighing balance. The apparatus, based on the thermogravimetric method, is able to test oxidation resistance of materials. In the test, the temperature range was −180∼3000◦C (the highest temperature is determined by material properties). The temperature control accuracy was ±5◦C. The accuracy of on-line weighing was ±0:1 mg. The measurement uncertainty was 0.2 mg. Compared with other relevant devices, this apparatus has its own advantages: simple operation, wide heating/cooling temperature range, sufficient specimen heating, high sensitivity and precision, and short heating/cooling time. The experimental results show that the developed apparatus presented in this study not only can be used for isothermal thermogravimetric tests, but also for thermal cycling tests and multi-step oxidation tests. With the effective integration of multiple heating apparatus and refrigeration apparatus, the apparatus breaks through the limitations of the heating/cooling temperature range of the existing devices, accomplishes the high-precision oxidation resistance test of materials in a wide temperature range, and will play a great role in improving the research of materials.
The study aimed to examine the use of Geomagnetic Anomaly Detection (GAD) to locate the buried ferromagnetic pipeline defects without exposing them. However, the accuracy of GAD is limited by the background noise. In the present work, we propose an approximate entropy noise suppression (AENS) method based on Variational Mode Decomposition (VMD) for detection of pipeline defects. The proposed method is capable of reconstructing the magnetic field signals and extracting weak anomaly signals that are submerged in the background noise, which was employed to construct an effective detector of anomalous signals. The internal parameters of VMD were optimized by the Scale–Space algorithm, and their anti-noise performance was compared. The results show that the proposed method can remove the background noise in high-noise background geomagnetic field environments. Experiments were carried out in our laboratory and evaluation results of inspection data were analysed; the feasibility of GAD is validated when used in the application to detection of buried pipeline defects.
Coordinate Measurement Machines (CMMs) have been extensively used in inspecting mechanical parts with higher accuracy. In order to enhance the efficiency and precision of the measurement of aviation engine blades, a sampling method of profile measurement of aviation engine blade based on the firefly algorithm is researched. Then, by comparing with the equal arc-length sampling algorithm (EAS) and the equi-parametric sampling algorithm (EPS) in one simulation, the proposed sampling algorithm shows its better sampling quality than the other two algorithms. Finally, the effectiveness of the algorithm is verified by an experimental example of blade profile. Both simulated and experimental results show that the method proposed in this paper can ensure the measurement accuracy by measuring a smaller number of points.
Journal | Publisher | ISSN |
IOP Publishing | 0026-1394 | |
IEEE | 0018-9456 | |
Elsevier | 0263-2241 | |
IOP Publishing | 0957-0233 | |
Metrology and Measurement Systems | PAS | 0860-8229 |
IOP Publishing | 0034-6748 | |
IEEE | 1557-9948 | |
IET | 1751-8822 | |
SISSA, IOP Publishing | 1748-0221 | |
Walter de Gruyter | 1335-8871 | |
IEEE | 1094-6969 | |
Bulletin of the Polish Academy of Sciences: Technical Sciences | PAS | 2300-1917 |
PAS | 1896-3757 | |
IEEE | 1558-1748 | |
MDPI | 1424-8220 |