Nauki Techniczne

Metrology and Measurement Systems

Zawartość

Metrology and Measurement Systems | 2023 | vol. 30 | No 4

Abstrakt

This article discusses the performance of an algorithm for detection of defect centers in semiconductor materials. It is based on direct parameter approximation with nonlinear regression to determine the parameters of thermal emission rate in the photocurrent waveforms. The methodology of the proposed algorithm was presented and its application procedure was described and the results of its application can be seen in measured photocurrent waveforms of a silicon crystal examined with High-Resolution Photoinduced Transient Spectroscopy (HRPITS). The performance of the presented algorithm was verified using simulated photocurrent waveforms without and with noise at the level of 10 -2. This paper presents for the first time the application of the direct approximation method using modern regression and clustering algorithms for the study of defect centers in semiconductors.
Przejdź do artykułu

Autorzy i Afiliacje

Witold Kaczmarek
1
Marek Suproniuk
1
Karol Piwowarski
1
Bogdan Perka
1
Piotr Paziewski
1

  1. Institute of Electronic Systems, Department of Electronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland

Abstrakt

Low-cost sensor arrays are an economical and efficient solution for large-scale networked monitoring of atmospheric pollutants. These sensors need to be calibrated in situ before use, and existing data-driven calibration models have been widely used, but require large amounts of co-location data with reference stations for training, while performing poorly across domains. To address this problem, a meta-learningbased calibration network for air sensors is proposed, which has been tested on ozone datasets. The tests have proved that it outperforms five other conventional methods in important metrics such as mean absolute error, root mean square error and correlation coefficient. Taking Manlleu and Tona as the source domain and Vic as the target domain, the proposed method reduces MAE and RMSE by 17.06% and 6.71% on average, and improves R2 by an average of 4.21%, compared with the suboptimal pre-trained multi-source transfer calibration. The method can provide a new idea and direction to solve the problem of cross-domain and reliance on a large amount of co-location data in the calibration of sensors.
Przejdź do artykułu

Autorzy i Afiliacje

Feng Tianliang
1
Xiong Xingchuang
2
Jin Shangzhong
1

  1. College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
  2. National Institute of Metrology, Beijing 100029, China

Abstrakt

This paper takes a look at the state-of-the-art solutions in the field of spectral imaging systems by way of application examples. It is based on a comparison of currently used systems and the challenges they face, especially in the field of high-altitude imaging and satellite imaging, are discussed. Based on our own experience, an example of hyperspectral data processing is presented. The article also discusses how modern algorithms can help in understanding the data that such images can provide.
Przejdź do artykułu

Autorzy i Afiliacje

Jędrzej Kowalewski
1 2
Jarosław Domaradzki
2
Michał Zięba
1
Mikołaj Podgórski
1 2

  1. Scanway, Dunska 9, 54-427 Wrocław, Poland
  2. Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems,Janiszewskiego 11/17, 50-372 Wrocław, Poland

Abstrakt

Gear involute artifact (GIA) is a kind of calibration standard used for traceability of involute metrology. To machine GIAs with sub-micron profile form deviations, the effect on the involute profile deviations caused by the geometric deviations and 6-DoF errors of the machining tool based on the double roller-guide involute rolling generation mechanismwas analysed.At the same time, a double roller-guide involute lapping instrument and a lapping method for GIAs was proposed for lapping and in-situ measuring the gear involute artifacts. Moreover, a new GIA with three design base radii (50 mm, 100 mm, and 131 mm) was proposed for more efficient calibration and was machined with profile form deviations of 0.3 μm (within evaluation length of 38 mm, 68 mm, 80 mm, respectively, measured by the Chinese National Institute of Metrology), and the surface roughness Ra of the involute flanks was less than 0.05 μm. The research supports small-batch manufacturing for high-precision GIAs.
Przejdź do artykułu

Autorzy i Afiliacje

Ming Ling
1
Siying Ling
2
Dianqing Yu
3
Zhihao Zhang
1
Fengtao Wang
2
Liding Wang
1

  1. Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
  2. Key Laboratory of Intelligent Manufacturing Technology of the Ministry of Education, Shantou University, Shantou 515063, China
  3. Liaoning Inspection, Examination & Certification Centre, Shenyang 110004, China

Abstrakt

The article presents a water-cooling system for photovoltaic (PV) modules using a two-axis tracking system that tracks the apparent position of the Sun on the celestial sphere. The cooling system consists of 150 adjustable spray nozzles that cool the bottom layer of PV modules. The refrigerant is water taken from a tank with a capacity of 7 m 3. A water recovery system reduces its consumption with efficiency of approximately 90%. The experimental setup consists of a full-size photovoltaic installation made of 10 modules with an output power of 3.5 kWp combined with a tracking system. The article presents an analysis of the cooling system efficiency in various meteorological conditions. Measurements of energy production were performed in the annual cycle using three different types of photovoltaic installations: stationary, two-axis tracking system and two-axis tracking system combined with the cooling system.
Przejdź do artykułu

Autorzy i Afiliacje

Kamil Płachta
1
Janusz Mroczka
1
Mariusz Ostrowski
1
ORCID: ORCID

  1. Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland

Abstrakt

The current machine vision-based surface roughness measurement mainly relies on the design of feature indicators associated with roughness to measure the surface roughness. However, the process is tedious and complicated. Moreover, most existing deep learning methods for workpiece surface roughness measurement use a monochromatic light source to acquire images. In the case of surface roughness in a grinding process with low roughness and random texture characteristics, the feature information obtained by monochromatic light source acquisition is relatively small. It is difficult to extract the workpiece surface roughness features, which can easily cause problems for subsequent measurement. Based on the problems above, this paper proposes a grinding surface roughness measurement method combining red-green information and a convolutional neural network. The technique uses a particular red-green block to highlight the grinding surface texture features. Finally, it classifies the grinding surface roughness measurement with a classification detection technique of the convolutional neural network. Experimental results show that the accuracy of the grinding surface roughness measurement method combining red-green information and the convolutional neural network is significantly improved compared with that of the grinding surface roughness measurement method without using the red-green data.
Przejdź do artykułu

Autorzy i Afiliacje

Jiefeng Huang
1 2
Huaian Yi
1 2
Runji Fang
1 2
Kun Song
1 2

  1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Guilin, China, 541006
  2. School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, China, 541006

Abstrakt

This work proposes a systematic assessment of measuring type A uncertainty (caused by random errors) used in RF power sensor calibration. To reduce A type uncertainty, several successive measurements are repeated. The uncertainty arises from repeatability errors in connectors caused by changes in their electrical properties during repeated mating. The suitability of the METAS UncLib software was analysed and we concluded that software should be developed to take into account the shape of probability density function (PDF) using a Monte Carlo method (MCM), which was lacking in METAS UncLib. The self-developed software was then tested on an example taken from the literature and the superiority of the MCM over the analytical method (GUM) was confirmed. During the calibration of the RF sensor using a vector network analyzer (VNA), a series of repeated measurements were performed and, after applying our MCM software, it was found that the measurement uncertainties calculated by the MCM method were several times larger than those by the GUM. The reason for this was that the correlation between the measured input quantities was not taken into account. When this was done using a covariance matrix and assuming a normal PDF of the input quantities, the results obtained with the GUM and the MCM converged. Our main objective was to investigate the influence of the PDF shape of the input measurement samples on the measurement uncertainty. Taking more than a dozen measurements is too costly, on the other hand, the small sample size prevents a reliable determination of the PDF shape. Finally, to overcome this inconvenience, we have developed a special method that uses the histograms of standardized input data taken at all measurement frequencies under fixed conditions without disconnecting the connectors, to increasing the total number of results which were needed to create the PDF histograms of input quantities.
Przejdź do artykułu

Autorzy i Afiliacje

Marek Jaworski
1
Jarosław Szatkowski
1
Tomasz Kossek
1

  1. National Institute of Telecommunications (NIT), Warsaw, Poland

Abstrakt

The paper deals with analysis of recognition of surface quality with reflective structures. Such surfaces are common in metallic materials cut using a saw or polished. There are no easy methods to identify such elements after machining. This issue is crucial in the industry for quality control as recognition of the elements, for instance after failure, allows for a detailed study of their manufacturing process. Firstly, six cuboid steel elements were obtained from a larger beam with a circular saw. Then, the bidirectional reflection distribution function (BRDF) was obtained for each element 3 times. The BRDF profiles were used in custom recognition software based on the K-nearest neighbors algorithm. In total, 140 variants of the classifier were tested and analyzed. Additionally, each variant was solved 200 times with different splits of the dataset. The results showed a high multiclass accuracy in all considered variants of the algorithm, with multiple variants achieving 100% accuracy. This level of performance was attained with only 1 to 2 training samples per class. Its low numerical complexity, easy experimental procedure, and “one-shot” nature allow for fast recognition, which is crucial in industrial applications.
Przejdź do artykułu

Autorzy i Afiliacje

Adam Ciszkiewicz
1
Janusz Jaglarz
2
Tadeusz Uhl
3

  1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
  2. Faculty of Material Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
  3. Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland

Abstrakt

Monitoring head movements is important in many aspects of life from medicine and rehabilitation to sports, and VR entertainment. In this study, we used recordings from two sensors, i.e. an accelerometer and a gyroscope, to calculate the angles of movement of the gesturing person’s head. For the yaw motion, we proposed an original algorithm using only these two inertial sensors and the detected motion type obtained from a pre-trained SVM classifier. The combination of the gyroscope data and the detected motion type allowed us to calculate the yaw angle without the need for other sensors, such as a magnetometer or a video camera. To verify the accuracy of our algorithm, we used a robotic arm that simulated head gestures where the angle values were read out from the robot kinematics. The calculated yaw angles differed from the robot’s readings with a mean absolute error of approx. 1 degree and the rate of differences between these values exceeding 5 degrees was significantly below 1 percent except for one outlier at 1.12%. This level of accuracy is sufficient for many applications, such as VR systems, human-system interfaces, or rehabilitation.
Przejdź do artykułu

Autorzy i Afiliacje

Anna Borowska-Terka
1
Paweł Strumiłło
1

  1. Łódz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering, Institute of Electronics, Al. Politechniki 10, 93-590 Łódz, Poland

Abstrakt

To reduce the random error of microelectromechanical system (MEMS) gyroscope, a hybrid method combining improved empirical mode decomposition (EMD) and least squares algorithm (LS) is proposed. Firstly, based on the multiple screening mechanism, intrinsic mode functions (IMFs) from the first decomposition are divided into noise IMFs, strong noise mixed IMFs, weak noise mixed IMFs and signal IMFs. Secondly, according to their characteristics, they are processed again. IMFs from the second decomposition are divided into noise IMFs and signal IMFs. Finally, useful signal is gathered to obtain the final denoising signal. Compared with some other denoising methods proposed in recent years, the experimental results show that the proposed method has obvious advantages in suppressing random error, greatly improving the signal quality and improving the accuracy of inertial navigation.
Przejdź do artykułu

Autorzy i Afiliacje

Hailong Rong
1
Tianlei Jin
1
Hao Wang
1
Xiaohui Wu
1
Ling Zou
1

  1. Changzhou University, Changzhou 213164, China

Abstrakt

Since the induction motor operates in a complex environment, making the stator and rotor of the motor susceptible to damage, which would have significant impact on the whole system, efficient diagnostic methods are necessary to minimize the risk of failure. However, traditional fault diagnosis methods have limited applicability and accuracy in diagnosing various types of stator and rotor faults. To address this issue, this paper proposes a stator-rotor fault diagnosis model based on time-frequency domain feature extraction and Extreme Learning Machine (ELM) optimized with Golden Jackal Optimization (GJO) to achieve highprecision diagnosis of motor faults. The proposed method first establishes a platform for acquiring induction motor stator-rotor fault data. Next, wavelet threshold denoising is used to pre-process the fault current signal data, followed by feature extraction to perform time-frequency domain eigenvalue analysis. By comparison, the impulse factor is finally adopted as the feature vector of the diagnostic model. Finally, an induction motor fault diagnosis model is constructed by using the GJO to optimize the ELM. The resulting simulations are carried out by comparing with neural networks, and the results show that the proposed GJO-ELM model has the highest diagnostic accuracy of 94.5%. This finding indicates that the proposed method outperforms traditional methods in feature learning and classification of induction motor fault diagnosis, and has certain engineering application value.
Przejdź do artykułu

Autorzy i Afiliacje

Lingzhi Yi
1 2
Jiao Long
1
Yahui Wang
1
Tao Sun
3
Jianxiong Huang
1
Yi Huang
1

  1. College of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan, 411105, China
  2. Hunan Engineering Research Center of Multi-Energy Cooperative Control Technology, Xiangtan, Hunan 411105, China
  3. State Grid Anhui Electric Power Ultra-High Voltage Company, Hefei, Anhui, 230000, China

Abstrakt

Geometrical tolerances as tricky measurands are indicated. Crucial differences between the ISO and ASME geometrical tolerancing standards are discussed. It is demonstrated that, in many cases, both systems have different default rules. Moreover, for some identical graphical indications, interpretations are different. On the other hand, the standards contain similar arrangements in many cases. It is underlined that nowadays, due to the progressing globalisation, it is necessary to know these standards, bearing in mind that suppliers or customers specify requirements according to provisions from particular standards implemented in their companies. The above justifies the need for research exploring differences and similarities in both systems of standards. It is shown that the ISO GPS system standards, due to default independency principle, prefer to set production as cheaply as possible, while ASME, due to default provisions ( e.g. Rule #1, simultaneous requirement) puts stress on controlling product geometry more strictly, which is sometimes unnecessary.
Przejdź do artykułu

Autorzy i Afiliacje

Zbigniew Humienny
1
Paweł Zdrojewski
2

  1. Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Machine Design Fundamentals, Narbutta 84, 02-524 Warsaw, Poland
  2. Łukasiewicz Research Network – Institute of Aviation, Aleja Krakowska 110/114, 02-256 Warsaw, Poland

Abstrakt

The paper presents the effect of ICP-RIE etching time using one-component plasma on various parameters of an InAs/GaSb type II superlattice matrix. In the studies, two samples used at different BCl3 gas flow rates were compared and it was found that using a lower flow rate of 7 sccm results in obtaining a smoother sidewall morphology. Next, five periodic mesa-shaped structures were etched under identical conditions, but using a different time. The results indicated that the ICP-RIE method using a BCl3 flow rate of 7 sccm, ICP:RIE power ratio of 300W:270W allowed the ICP:RIE formation of a periodic mesa-shaped structure with smooth and perpendicular sidewalls.
Przejdź do artykułu

Autorzy i Afiliacje

Marta Różycka
1 2
Agata Jasik
1
ORCID: ORCID
Paweł Kozłowski
1
ORCID: ORCID
Krzysztof Bracha
1
Jacek Ratajczak
1
Anna Wierzbicka-Miernik
2

  1. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, 32/46 Lotników Avenue, 02-668, Warsaw, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059, Kraków, Poland

Abstrakt

In the diagnosis of many disease entities directly or indirectly related to disorders of respiratory parameters and heart disease, an important support would be to estimate the temporal changes in these parameters (most often respiratory wave (RW) and respiratory rate (RR)) on the basis the results of measurements of other physiological parameters of the patient. Such a possibility exists during ECG examination. The paper presents three methods for estimating RWand RR using ECG signal processing. The three procedures developed are shown: using Savitzky–Golay filtering (S-G), the ECG-Derived Respiration method (EDR) and the Respiratory Sinus Arrhythmia Analysis method (RSA). It must be clearly stated that the proposed methods are not designed to fully diagnose the patient’s respiratory function, but they can be applied to detect some conditions that are difficult to diagnose when performing an ECG, such as sleep-disordered breathing. The obtained results of the analysis were compared with those obtained from a dedicated measurement system developed by the authors. The second part of the paper will show the results of preliminary clinical verification of the developed analysis methods, taking into account the physiological parameters of the patient.
Przejdź do artykułu

Autorzy i Afiliacje

Miroslaw Szmajda
1
Mirosław Chyliński
1
Jerzy Szacha
2
Janusz Mroczka
3

  1. Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole, Poland
  2. Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76 Street, 45-758 Opole; Department of Cardiology, University Hospital in Opole, 45-401 Opole, Poland
  3. Faculty of Electronics, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Wrocław University of Science and Technology, B. Prusa 53/55 Street, 50-317 Wrocław, Poland

Abstrakt

Looseness of high-strength wind turbine bolts is one of the main types of mechanical failure that threaten the quality and safety of wind turbines, and how to non-destructively detect bolt loosening is essential to accurate assessment of operational reliability of wind turbine structures. Therefore, to address the issue of looseness detection of high-strength wind turbine bolts, this paper proposes a non-destructive detection method based on digital image correlation (DIC). Firstly, the mathematical relationships between the inplane displacement component of the bolt’s nut surface, the bolt’s preload force loss and the bolt loosening angle are both deduced theoretically. Then, experimental measurements are respectively conducted with DIC with different small bolt loosening angles. The results show that the bolt loosening angle detection method based on DIC has a detection accuracy of over 95%, and the bolt’s preload force loss evaluated by the deduced relationship has a good agreement with the empirical value. Therefore, the proposed DIC-based bolt loosening angle detection method can meet the requirements of engineering inspection, and can achieve quantitative assessment of preload forces loss of wind turbine bolt.
Przejdź do artykułu

Autorzy i Afiliacje

Wei-Guo Xie
1
Peng Zhou
1
Li-Yun Chen
1
Guo-Qing Gu
2
Yong-Qing Wang
3
Yu-Tao Chen
4

  1. Yancheng Institute of Supervision & Inspection on Product Quality, Yancheng 224056, China
  2. School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China
  3. School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
  4. School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

Instrukcja dla autorów



Sample article with Author guidelines



Author guidelines



Types of contributions

Metrology and Measurement Systems welcomes submissions of the following article types:

• invited special issue or review papers presenting the current stage of the knowledge within scope of the journal (about 20 edited pages, approximately 3000 characters each),
• research papers reporting high-quality original scientific or technological advancements (max. 12 pages),
• papers based on extended and updated contributions presented at scientific conferences (max. 12 pages),
• short notes, i.e. book reviews, conference reports, short news (max. 2 pages).


Manuscript preparation

General The text of a manuscript should be written in clear and concise English. The camera-ready format – with attached separate files containing illustrations, tables and photographs – is required. A cover letter with clear explanation of scientific novelty of the paper is strongly recommended. Papers based on extended and updated contributions presented at scientific conferences, or strongly related to previous authors’ works, must be accompanied with a cover letter file, which should explain in details changes made in the manuscript in comparison with the original conference paper and highlight the novelty in reference to other authors’ works.
The main text of a manuscript should be printed on an A4 page (with margins of 2.5 cm) using Times New Roman style with a font size of 12 pt; the paragraphs should start with the indentation of 5 mm, and titles should be written in bold. That text can be divided into sections (numbered 1, 2, …), first-order subsections (numbered 1.1., 1.2., …, written in italics), and – if needed – second-order subsections (numbered 1.1.1., 1.1.2., …, written same as first-order subsections). The only acceptable manuscript formats are in Microsoft Word (.doc, .docx).

The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors. The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors.


Figures
Figures (illustrations, photographs) and tables, provided in the camera-ready form suitable for reproduction (which may include reduction), should be additionally submitted (one per page), larger than the final size. While preparing figures we encourage to start with defining expected size and minimum font size that fit to all graphics in the manuscript – using the same style in all of your graphics visually improves the article. Final figure formats must be in one of the following: (vectors) .eps, .pdf, .ai or .cdr, and (bitmaps) .bmp, .gif, .tif or .jpg.
As far as plots, block diagrams, schematics etc. are concerned, we suggest to use one of vector formats to improve quality and scalability. Figures in vector formats must be saved using RGB colours and with fully white background (0% K). Hidden layers are unacceptable. Minimum line thickness printed in a single colour is 0.25 pt (0.09 mm), and 1 pt (0.36 mm) when using more colours. Typically we suggest 0.2-0.5 mm but in particular cases the range 0.1–1.0 mm will be accepted. Lines in plots should be distinguished not only by using different colours but also using different line types and markers, if needed.


Equation
All equations must be numbered consecutively throughout the text. Each equation should be preceded and followed by a 6-point spacing. Punctuate equations when they are part of a sentence. Equation numbers should be enclosed in parentheses. Equations should be prepared with the use of MathType or Microsoft Equation editors. The type size in the equation is the same as for the text. To make your equations more compact, you may use the appropriate mathematical symbols or expressions. The symbols used in an equation have to be defined before that equation or immediately after it. Use italics for variables (e.g. i, x, n), physical quantity symbol (e.g. voltage U, temperature T), letter pointers and general function symbols. Do not use italics for constants, indexes, minimum, maximum and trigonometric functions, mathematical operators, differentials, etc. To refer to the equation use “(1)”, not “Eq. (1)” or “equation (1)”, except at the beginning of a sentence where “Equation (1)” should be used. We recommend to use International System of Units SI i.e. metre-kilogram-second system of units. As a decimal separator dot should be used in the entire manuscript (text, figures, tables).


References
The paper has to be clearly positioned in the context of relevant literature in the field of measurements and instrumentation. Note that lack of references from the main field of Metrology and Measurement Systems interest may suggest that the content of manuscript does not exactly correspond to the scope of metrological journals. It may reduce possibility that a proposed paper will be read by audience society. In such a case our Editorial Board may suggest to send the manuscript to a more appropriate journal. Also note that the use of possibly up-to-date references may indicate importance of your work. Table below gives examples of some relevant and renewable journals related to widely understood metrology.


Journal

Publisher

ISSN

Metrologia

IOP Publishing

0026-1394

IEEE Transactions on Instrumentation and Measurement

IEEE

0018-9456

Measurement

Elsevier

0263-2241

Measurement Science and Technology

IOP Publishing

0957-0233

Metrology and Measurement Systems

PAS

0860-8229

Review of Scientific Instruments

IOP Publishing

0034-6748

IEEE Transactions on Industrial Electronics

IEEE

1557-9948

IET Science, Measurement & Technology

IET

1751-8822

Journal of Instrumentation

SISSA, IOP Publishing

1748-0221

Measurement Science Review

Walter de Gruyter

1335-8871

IEEE Instrumentation and Measurement Magazine

IEEE

1094-6969

Bulletin of the Polish Academy of Sciences: Technical Sciences

PAS

2300-1917

Opto-Electronics Review

PAS

1896-3757

IEEE Sensors Journal

IEEE

1558-1748

Sensors

MDPI

1424-8220




References should be inserted in the text in square brackets, i.e. [1]; their list, numbered in citation order, should appear at the end of the manuscript. The format of the references should follow the APA 7th edition formatting style, i.e.: for an journal paper – surname(s) and initial(s) of author(s), year in brackets, title of the paper, full journal name, volume, issue (in brackets) and page numbers. Put all author names unless there are more than 20. Otherwise, after the first 19 authors’ names, use an ellipsis in place of the remaining author names. Then, end with the final author’s name (do not place an ampersand before it).


Submission process
Manuscript should be submitted via the Internet Editorial System (IES) – an online submission and peer review system. In order to submit the manuscript via the IES, the authors (first-time users) must create an author account to obtain a user ID and password required to enter the system. The submission of the manuscript in a single file, i.e. “Article File” containing the complete manuscript (with all figures of high quality and tables embedded in the text), is preferred. All figures have to be uploaded in separate files. The generated PDF file has to be approved. The PDF file has lower quality of the embedded figures to limit its size only.
The submission of a manuscript means that its content has not been published previously, it is not under consideration for publication elsewhere, and that – if accepted – it will not be published elsewhere. The Author hereby grants the Polish Academy of Sciences (the Journal Owner) the license for commercial use of the article according to the Open Access License ( CC BY-NC-ND 4.0), which has to be signed before publication. The copyright form is available in the IES.
The Authors are urged to suggest 4 to 5 reviewers in their application (with names, affiliations and addresses) with whom the Editorial Board could co-operate while processing the paper. Proposed reviewers should be experts deeply involved in issues related to the subject matter of the paper and they are intended to come from different universities or research centres.
Each submitted manuscript is subject to a single-blind peer-review procedure, and the publication decision is based on the reviewers’ comments. If necessary, the authors may be invited to revise their manuscripts. On acceptance, manuscripts are subject to editorial amendment to exactly fit the journal style.
An essential criterion for the evaluation of submitted manuscripts is their potential impact on the research field, measured by the number of repeated quotations. Such papers are preferred at the evaluation and publication stages.
Proofs will be sent to the corresponding author by e-mail and should be returned within 48 hours from receipt. The publication in the journal is free of charge. A sample copy of the journal will be sent to the corresponding author free of charge. For colour pages the authors will be charged at the rate of 160 PLN or 80 EUR per page. The payment to the bank account of the main distributor (given in “Subscription Information”) must be completed before the date indicated by the Editorial Office.


Other information
It is possible to include supplementary files related to the article content, such as e.g. developed databases. These files can be then used by other researchers to compare their algorithms using the same input data. For more details about supplementary files please contact the Editorial Board: metrology@wat.edu.pl. The biographical statements, at the very end of the article, are not obligatory, however, they are kindly recommended. Each statement should include the author’s full name and brief personal history focused on areas of research and scientific achievements. The biographical statement may not exceed 100 words and should be written using Times New Roman style with a font size of 8 pt.
The publication of your article is a great achievement but then it needs to be further promoted to make it more visible to the research community. Responsibility for this task lies with the Authors and our Editorial Board. We guarantee free access to the article in the Journals PAN of the Polish Academy of Science, including articles in Early Access form (published just after acceptance decision), indexing in popular and renewable databases (e.g. Thomson Scientific Master Journal List, Elsevier’s Scopus, Google Scholar). Furthermore, selected articles are highlighted on the journal website and are reprinted for promotion at conferences and other events. The Authors can share the final form of the article on various social networks and research-sharing platforms, such as Twitter, Facebook, Linkedin, ResearchGate, Academia.edu, SciProfiles. They are also encouraged to update personal and institutional webpages by adding the title and a link of the article. Feel free also to share your work with your colleagues using any other methods that do not conflict with the CC BY-NC-ND 4.0 license.
For more detailed description about how to write a paper for the Metrology and Measurement Systems journal please look at the Author guidelines for manuscript preparation. We strongly recommend using this file as a template for manuscript preparation.


Ta strona wykorzystuje pliki 'cookies'. Więcej informacji