Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2016 | vol. 24 | No 4

Download PDF Download RIS Download Bibtex

Abstract

In cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.

Go to article

Authors and Affiliations

P. Moszczyński
A. Walczak
P. Marciniak
Download PDF Download RIS Download Bibtex

Abstract

There exists a need in a quality and accuracy of a three-dimensional laser metrology operating in numerically controlled automatic machines. For this purpose, one sends three laser beams mutually perpendicular. These three beams of the wavelength λ = 0.6328 μm are generated by the same laser and are directed along three independent, orthogonal, mutually perpendicular, optical paths with a given light polarization plain. Using these beams, constituting the frame of coordinates, three independent laser rangefinders are able to determine spatial coordinates of a working tool or a workpiece. To form these optical pulses, a special refractive index matched Half-Wave Plate with nematic Liquid Crystal (LCHWP) was applied. The presented half-wave plate is based on a single Twisted Nematic (TN) cell (with the twist angle Φ = π/2) of a rather high cell gap d ~15 μm filled with a newly developed High-Birefringence Nematic Liquid Crystal Mixture (HBLCM) of optical anisotropy as high as Δn ~0.40 at λ = 0.6328 μm, where the Mauguin limit above 5.00 ~ Δnd >> λ/2 = 0.32 is fulfilled.

Go to article

Authors and Affiliations

W. Piecek
L.R. Jaroszewicz
ORCID: ORCID
E. Miszczyk
Z. Raszewski
M. Mrukiewicz
P. Perkowski
E. Nowinowski-Kruszelnicki
J. Zieliński
M. Olifierczuk
J. Kędzierski
X.W. Sun
K. Garbat
K. Kowiorski
P. Morawiak
R. Mazur
J. Tkaczyk
Download PDF Download RIS Download Bibtex

Abstract

The Fibre Bragg Grating (FBG) based temperature optical sensor has been designed and demonstrated. FBGs have been modelled and fabricated so as to convert the Bragg wavelength shift into the intensity domain. The main experimental setup consists of a filtering FBG and two scanning FBGs, respectively, left and right scanning FBG, whereby scanning FBGs are symmetrically located on the slopes of the filtering FBG. Such an approach allows for the modulation of power for the propagating optical signal depending on the ambient temperature at the scanning FBG location. A positive or negative change of power is determined by the spectral response of the FBG. Experimental research of the scanning FBGs’ sensitivities emphasized that the key issue is the filtering FBG. A different level of sensitivity could be achieved due to the spectral characteristic of the filtering FBG. Omitting advanced and high-cost devices, the FBG-based temperature sensor is presented. The FBG-based sensor setup could yield resolution of 1°C for the range of temperature 0.5°C to 52.5°C. The experimental study has been performed as a base for an easy-placed sensor system to monitor external parameters in real environment.

Go to article

Authors and Affiliations

M. Mądry
K. Markowski
K. Jędrzejewski
E. Bereś-Pawlik
Download PDF Download RIS Download Bibtex

Abstract

A novel all optical measurement scheme is proposed to measure wideband microwave frequencies up to 30 GHz. The proposed method is based on a four-wave mixing (FWM) approach in a semiconductor optical amplifier (SOA) of both even order side-bands generated by an unknown microwave frequency modulating an optical carrier. The optical power of a generated FWM signal depends on frequency spacing between extracted side-bands. A mathematical relation is established between FWM power and frequency of an unknown signal. A calibration curve is drawn based on the mathematical relation which predicts the unknown frequency from power withdrawn after FWM

Go to article

Authors and Affiliations

A. Kumar
V. Priye
R. Raj Singh
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a simulation of the plasmon effect achieved between a thin precious metal layer and a biconical optical fibre taper, manufactured on a standard single mode fibre. Gold, silver and titanium were used as a metal which fulfilled a cladding function for a small diameter structure. For simulation Mode Solution software was used on which modal and frequency analyses of a wavelength were provided in the range of 800–1700 nm. A displacement of a plasmon pick in dependence of thickness of a deposited precious layer for the highest plasmon effects was observed.

Go to article

Authors and Affiliations

K.A. Stasiewicz
J.E. Moś
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIUfor the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

Go to article

Authors and Affiliations

A. Zakrzewski
A. Pięta
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

We demonstrated two methods of increasing the bandwidth of a broadband light source based on amplified spontaneous emission in thulium-doped fibres. Firstly, we have shown by means of a comprehensive numerical model that the full-width at half maximum of the thulium-doped fibre based broadband source can be more than doubled by using specially tailored spectral filter placed in front of the mirror in a double-pass configuration of the amplified spontaneous emission source. The broadening can be achieved with only a small expense of the output power. Secondly, we report results of the experimental thulium-doped fibre broadband source, including fibre characteristics and performance of the thulium-doped fibre in a ring laser setup. The spectrum broadening was achieved by balancing the backward amplified spontaneous emission with back-reflected forward emission.

Go to article

Authors and Affiliations

M. Písařík
Pavel Peterka
ORCID: ORCID
J. Aubrecht
J. Cajzl
A. Benda
D. Mareš
F. Todorov
O. Podrazký
Pavel Honzátko
ORCID: ORCID
I. Kašík

Instructions for authors

Guide for Authors

https://www.editorialsystem.com/opelre/journal/for_authors/

OPTO-ELECTRONICS REVIEW is an open access journal. This involves the payment of an article publishing charge (APC) by the authors, their institution or funding body. We make the article freely available immediately upon publication on PAS Jornals platform (https://journals.pan.pl/opelre)

As of July 1st, 2024, there are changes in the fees for open access publications in Opto-Electronics Review: 2000 PLN (500 EUR) - up to 8 pages of the journal format and mandatory over-length charges of 200 PLN (50 EUR) per page (see the above link with instructions for Authors for details)

Articles submitted by June 30th, 2024: existing fee: 1750 PLN (or 400 EUR)

Articles submitted from July 1st, 2024: new fee: 2000 PLN (or 500 EUR) - a flat fee per paper up to 8 pages of the journal format (each additional page will be charged an additional 200 PLN or 50 EUR).

Additional info

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encouraged. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Arianta

BazTech

EBSCO relevant databases

EBSCO Discovery Service

SCOPUS relevant databases

ProQuest relevant databases

Clarivate Analytics relevant databases

WangFang

additionally:

ProQuesta (Ex Libris, Ulrich, Summon)

Google Scholar

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Ethical policy of Opto-Electronics Review

The ethical policy of Opto-Electronics Review follows the European Code of Conduct for Research Integrity and is also guided by the core practices and policies outlined by the Committee on Publication Ethics (COPE).

Authors must be honest in presenting their results and conclusions of their research. Research misconduct is harmful for knowledge.

Research results

Fabrication, falsification, or selective reporting of data with the intent to mislead or deceive is unethical, as is the theft of data or research results from others. The results of research should be recorded and maintained to allow for analysis and review. Following publication, the data should be retained for a reasonable period and made available upon request. Exceptions may be appropriate in certain circumstances to preserve privacy, to assure patent protection, or for similar reasons.

Authorship

All those who have made a significant contribution should be given chance to be cited as authors. Other individuals who have contributed to the work should be acknowledged. Articles should include a full list of the current institutional affiliations of all authors, both academic and corporate.

Competing interests

All authors, referees and editors must declare any conflicting or competing interests relating to a given article. Competing interests through their potential influence on behavior or content or perception may undermine the objectivity, integrity, or perceived value of publication.

Peer Review

We are committed to prompt evaluation and publication of fully accepted papers in Opto-Electronics Review’s publications. To maintain a high-quality publication, all submissions undergo a rigorous review process.

Characteristics of the peer review process are as follows:

• Simultaneous submissions of the same manuscript to different journals will not be tolerated.

• Manuscripts with contents outside the scope will not be considered for review.

• Opto-Electronics Review is a single-blind review journal.

• Papers will be refereed by at least 2 experts as suggested by the editorial board.

• In addition, Editors will have the option of seeking additional reviews when needed. Authors will be informed when Editors decide further review is required.

• All publication decisions are made by the journal’s Editor-in-Chief based on the referees’ reports. Authors of papers that are not accepted are notified promptly.

• All submitted manuscripts are treated as confidential documents. We expect reviewers to treat manuscripts as confidential material.

• Editors and reviewers involved in the review process should disclose conflicts of interest resulting from direct competitive, collaborative, or other relationships with any of the authors, and remove oneself from cases in which such conflicts preclude an objective evaluation. Privileged information or ideas that are obtained through peer review must not be used for competitive gain.

• A reviewer should be alert to potential ethical issues in the paper and should bring these to the attention of the editor, including any substantial similarity or overlap between the manuscript under consideration and any other published paper of which the reviewer has personal knowledge. Any statement, observation, derivation, or argument that had been previously reported should be accompanied by the relevant citation.

• Personal criticism is inappropriate.

Plagiarism

Reproducing text from other papers without properly crediting the source (plagiarism) or producing many papers with almost the same content by the same authors (self-plagiarism) is not acceptable. Submitting the same results to more than one journal concurrently is unethical. Exceptions are the review articles. Authors may not present results obtained by others as if they were their own. Authors should acknowledge the work of others used in their research and cite publications that have influenced the direction and course of their study.

Plagiarism is not tolerated. All manuscripts submitted to Opto-Electronics Review will be checked for plagiarism (copying text or results from other sources) and self-plagiarism (duplicating substantial parts of authors’ own published work without giving the appropriate references) using the CrossCheck database (iThenticate plagiarism checker).

Duplicate submission

Simultaneous submissions of the same manuscript to different journals will not be tolerated. The submitted article will be removed without consideration.

Corrections and retractions

All authors have an obligation to inform and cooperate with journal editors to provide prompt retractions or correction of errors in published works.

• The journal will issue retractions if:

• There is clear evidence that the findings are unreliable, either as a result of misconduct (e.g., data fabrication or honest error - miscalculation or experimental error);

• The findings have previously been published elsewhere without proper cross-referencing, permission or justification (i.e., cases of redundant publication);

• It constitutes plagiarism;

• It reports unethical research.

• The journal will issue errata, if:

• A small portion of an otherwise reliable publication proves to be misleading (especially because of honest error);

• The author list is incorrect.

Other forms of misconduct include failure to meet clear ethical and legal requirements such as misrepresentation of interests, breach of confidentiality, lack of informed consent and abuse of research subjects or materials. Misconduct also includes improper dealing with infringements, such as attempts to cover up misconduct and reprisals on whistleblowers.

The primary responsibility for handling research misconduct is in the hands of those who employ the researchers. If a possible misconduct is brought to our attention, we will seek advice from the referees and the Editorial Board. If there is the evidence, we will resolve the matter by appropriate corrections in the printed and online journal; by refusing to consider an author's future work and by contacting affected authors and editors of other journals.

Human and Animal Rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the ARRIVE guidelines and should be carried out in accordance with the EU Directive 2010/63/EU for animal experiments, and the authors should clearly indicate in the manuscript that such guidelines have been followed.

This page uses 'cookies'. Learn more