Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2546
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Wastewater treatment and the efficient use of sewage sludge biochar are critical in addressing the needs of ever-increasing population in the world. Recently, phosphorus (P) removal from wastewater has become highly relevant and important, primarily to reduce eutrophication in surface waters. Using sewage sludge biochar as an adsorbent for phosphate removal from wastewater offers an opportunity to reuse sewage sludge (SS) and return phosphorus to the biogeochemical cycle. In this study, the efficiency of two phosphate removal methods - batch adsorption and fixed-bed column process – was investigated using pyrolyzed sewage sludge biochar (PSSB) produced at different temperatures (300 °C, 400 °C, 500 °C, 600 °C). In the batch adsorption experiment, direct mixing of 600 °C pyrolyzed sewage sludge biochar with wastewater resulted in a relatively low phosphate removal efficiency (only about 18 %) at an initial phosphate concentration of 100 mg/l. In contrast, the fixed-bed column process, using PSSB as a filter for phosphate adsorption, showed significantly better results. The highest phosphate removal efficiency (up to 90%) was achieved after 30 min of filtration, using an initial phosphate concentration of 30 mg/l initial and biochar pyrolyzed at 600 °C.
Go to article

Bibliography

Almanassra, I.W., Mckay, G., Kochkodan, V., Ali Atieh, M. & Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 409, 128211. DOI:10.1016/J.CEJ.2020.128211 Deng, L., Shi, Z., Li, B., Yang, L., Luo, L. & Yang, X. (2014). Adsorption of Cr(VI) and phosphate on Mg-Al hydrotalcite supported kaolin Clay prepared by ultrasound-assisted coprecipitation method using batch and fixed-bed systems. Industrial and Engineering Chemistry Research, 53(18), pp. 7746–7757. DOI:10.1021/ie402917s Havukainen, J., Nguyen, M.T., Hermann, L., Horttanainen, M., Mikkilä, M., Deviatkin, I. & Linnanen, L. (2016). Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Management, 49, pp. 221–229. DOI:10.1016/J.WASMAN.2016.01.020 He, L., Chen, Y., Sun, F., Li, Y., Huang, W. & Yang, S. (2022). Controlled release of phosphorus using lanthanum-modified hydrochar synthesized from water treatment sludge: Adsorption behavior and immobilization mechanism. Journal of Water Process Engineering, 50, 103319, pp. 1−14. DOI:10.1016/j.jwpe.2022.103319. Herzel, H., Krüger, O., Hermann, L. & Adam, C. (2016). Sewage sludge ash — A promising secondary phosphorus source for fertilizer production. Science of The Total Environment, 542, pp. 1136–1143, DOI: 10.1016/J.SCITOTENV.2015.08.059 Jamaludin, N., Rashid, S. A. & Tan, T. (2019). Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 109–134. DOI:10.1016/B978-0-12-815757-2.00005-X Januševičius, T., Mažeikienė, A., Danila, V. & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery, 1, pp. 1–10. DOI:10.1007/s13399-021-02295y Jourak, A., Frishfelds, V., Lundström, T. S., Herrmann, I.. & Hedström, A. (2011). Modeling of Phosphate Removal by Filtra P in Fixed-bed Columns, https://www.diva-portal.org/smash/get/diva2:1004231/FULLTEXT01.pdf Jozwiakowska, K. & Marzec M. (2020). Efficiency and reliability of sewage purification in long-term exploitation of the municipal wastewater treatment plant with activated sludge and hydroponic system. Archives of Environmental Protection, 46 (3), pp. 30–41. DOI:10.24425/aep.2020.134533 Jung, K. W., Jeong, T. U., Choi, J. W., Ahn, K. H. & Lee, S. H. (2017). Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Bioresource Technology, 244, pp. 23–32. DOI:10.1016/J.BIORTECH.2017.07.133 Khanmohammadi, Z., Afyuni, M. & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management and Research, 33(3), pp. 275-283. DOI:10.1177/0734242X14565210 Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G. & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, pp. 460–469. DOI:10.1016/J.SCITOTENV.2019.05.400 Liu, J., Huang, Z., Chen, Z., Sun, J., Gao, Y. & Wu, E. (2020). Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water. Journal of Cleaner Production, 257, 120322. DOI:10.1016/J.JCLEPRO.2020.120322 Lv, M.Y., Yu H.X. & Shang, X.Y. (2023). Sludge derived biochar: A review on the influence of synthesis conditions on environmental risk reduction and removal mechanism of wastewater pollutants. Archives of Environmental Protection, 49 (2), pp. 3–15. DOI:10.24425/aep.2023.145892 Ma, Y., Li, P., Yang, L., Wu, L., He, L., Gao, F., Qi, X. & Zhang, Z. (2020). Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. Ecotoxicology and Environmental Safety, 196, 110550. DOI:10.1016/J.ECOENV.2020.110550 Mekonnen, D.T., Alemayehu, E., Lennartz, B., Unuabonah, E. & Taubert, A. (2021). Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials, pp. 14(19), 5466. DOI:10.3390/MA14195466 Mo, J., Li, Q., Sun, X., Zhang, H., Xing, M., Dong, B. & Zhu, H. (2024). Capacity and Mechanisms of Phosphate Adsorption on Lanthanum-Modified Dewatered Sludge-Based Biochar. Water, 16, 418, pp. 1−16. DOI:10.3390/w16030418 Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. & Bui, X.T. (2015). Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study. Science of The Total Environment, 523, pp. 40–49. DOI:10.1016/J.SCITOTENV.2015.03.126 Nobaharan, K., Novair, S.B., Lajayer, B.A. & van Hullebusch, E.D. (2021). Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13(4), pp. 517. DOI:10.3390/W13040517 Rangabhashiyam, S., Lins, P.V. dos S., Oliveira, L. M.T. de M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U. & Meili, L. (2022). Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution, 293, 118581. DOI:10.1016/J.ENVPOL.2021.118581 Wang, Z., Miao, R., Ning, P., He, L. & Guan, Q. (2021). From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. Journal of Colloid and Interface Science, 593, pp. 434–446. DOI:10.1016/J.JCIS.2021.02.118 Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F., Zhao, J., Wang, S., Yao, F., Wang, D., Li, X., & Zeng, G. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, pp. 537–544. DOI:10.1016/J.BIORTECH.2017.09.136 Yin, Q., Liu, M. & Ren, H. (2019). Biochar is produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management, 249, 109410. DOI:10.1016/J.JENVMAN.2019.109410 Zhang, D., Zhang, K., Hu, X., He, Q., Yan, J. & Xue, Y. (2021). Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis, and fixed bed filtration. Journal of Hazardous Materials, 408, 124860. DOI:10.1016/J.JHAZMAT.2020.124860 Zhou, K., Barjenbruch, M., Kabbe, C., Inial, G. & Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. Journal of Environmental Sciences, 52, pp. 151–159. DOI:10.1016/J.JES.2016.04.010
Go to article

Authors and Affiliations

Rasa Vaiškūnaitė
1
ORCID: ORCID

  1. Department of Environmental Protection and Water Engineering,Vilnius Gediminas Technical University, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Non-invasive real-time measurements of phase content in the reservoir fluid are highly advantageous in the oil and gas industry and remain a current research topic. The paper presents an innovative, self-designed multi-electrode capacitance meter intended for detecting multiphase flow patterns in a low-permittivity medium, such as the reservoir fluid. The ca-pacitance sensor is built with delta-sigma charge modulators capacitance-to-digital converters. Machine learning is applied to convert the capacitance measurements into a tomographic image of the flow pattern. At present, the meter is built with eight electrodes. It is shown that the measurements are repeatable and have a good signal-to-noise ratio. The implemented neural network is capable of correctly reconstructing the tomographic images for a test tube filled with reservoir fluid and placed in various locations inside the test section.
Go to article

Authors and Affiliations

Remigiusz Ornowski
1 2
Marcin Lackowski
1
Roman Kwidzinski
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
  2. TERCJA Measuring and Computer Systems, Dywizjonu 303 5B/24, 80-462 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bioenergy carbon capture technology (BioCCS or BECCS) plays a key role in the European Green Deal, which aims to decarbonize industry and energy sectors, resulting in the production of energy with negative CO2 emissions. Due to the biogenic origin of carbon contained in municipal solid waste (MSW), the application of carbon capture in waste incinera-tion plants can be classified as BioCCS. Thus, this technology has attracted scientists' attention recently since it reduces excessive waste and emissions of carbon dioxide. Currently, there are four incineration plants in the Netherlands, Norway and Japan, in which CO2 capture is implemented; however, they are based on the post-combustion technique since it is the most mature method and not requires many changes in the system. Nevertheless, the separation of CO2 from the flue gas flow, which contains mostly nitrogen, is complex and causes a large drop in the total performance of the system. Oxy-fuel combustion technology involves the replacement of air as an oxidizer into high purity oxygen and recirculated exhaust gas. As a result, CO2-rich gas is produced that is practically ready for capture. The main goal of the study is to develop a math-ematical model of oxy-waste combustion to answer the research questions, such as how the composition of oxidant that is supplied to the process affects the combustion performance. The model includes all important processes taking place within the chamber, such as pyrolysis, char burnout and gas combustion over the grate. The results of the work will contribute to the development of oxy-waste incineration plants and will be useful for design purposes.
Go to article

Authors and Affiliations

Paulina Copik
1
Andrzej Szlęk
1
Mario Ditaranto
2

  1. Department of Thermal Technology, Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland
  2. SINTEF Energy Research, Sem Sælands vei 11, 7034 Trondheim, Norway
Download PDF Download RIS Download Bibtex

Abstract

Using oxygenated alternative fuels in compression ignition (CI) engines is feasible for energy security problems and cli-mate change. Alcohols are regarded as alternative fuels for compression ignition engines because of their excellent physi-cochemical features, emission, and combustion characteristics. Research on alcohols and their additions has progressed significantly in recent years. Several researchers have examined the combined effect of higher alcohol with diesel and their impact and challenged that concentrations of higher alcohol reduce harmful particulate emissions in CI engines. This paper mainly focused on the performance and emissions properties of higher alcohols like butanol and pentanol. Alcohol has a low energy content, typically affecting engine brake-specific fuel consumption (BSFC). Low-temperature combustion (LTC) in compression ignition engines can lower NOx and smoke emissions, and improve the efficiency of the engine. LTC is done by combining higher alcohol with increased exhaust gas recirculation (EGR) rate and retarded fuel injection timing. The higher alcohol, along with the oxygen in the fuel reduces exhaust fumes, improves the air/fuel mixture by providing a longer ignition delay (ID), and can replace the fossil fuel like diesel (partially or whole) to allow efficient and clean combustion in CI engines. Finally, several significant findings and comments are provided regarding potential ave-nues for experimental research and future development. According to thorough analysis, bio-alcohols are considered to be a substitute fuel for CI engines.
Go to article

Authors and Affiliations

Deepak Kumar
1
Naveen Kumar
2
Rajiv Chaudhary
1

  1. Department of Mechanical Engineering, Delhi Technological University, New Delhi, India, 110042
  2. Centre for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Delhi, India, 110042
Download PDF Download RIS Download Bibtex

Abstract

The ongoing trend of miniaturization of electronic devices, including computer processors, high-speed servers and micro-electro-mechanical system devices, should go hand in hand with their improved performance. However, managing heat remains a major challenge for these devices. In the present study, a numerical investigation was done on a micro-channel heat sink with an open-stepped micro-pin fin heat sink with various arrangements through ANSYS software. Pin fin was varied in a fashion of increasing and decreasing. The working fluid opted for was water in a single phase. The analysis takes into account varying thermo-physical properties of water. The operating parameters, i.e. the Reynolds number was taken as 100–350 and heat flux as 500 kW/m2. Arrangements selected were staggered and inline. Observations revealed that the staggered 2 arrangement has shown better thermal performance than other arrangements within the entire investigated range of Reynolds numbers because of the effective mixing of fluids. Furthermore, the inline configuration of micro pin fin heat sink has the worst performance. It is interesting to note that a very small difference was observed in the heat transfer capability of both staggered configurations, while the pressure drop in the staggered 2 arrangement has shown an elevated value at a higher Reynold number value compared to the staggered 1 arrangement.
Go to article

Authors and Affiliations

Prabhakar Bhandari
1
Vineet Sharma
2
Lalit Ranakoti
3
Vijay Singh Bisht
4
Manish Kumar Lila
5
Shivasheesh Kaushik
6
Nikhil Kanojia
7
Ayushman Srivastava
7
Bhupendra Kumar
8
Shailesh Ranjan Kumar
9
Manish Kumar
10
Ashwarya Raj Paul
11

  1. Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram, Haryana-122103, India
  2. Department of Electrical Engineering, Poornima College of Engineering, Jaipur-302033, India
  3. Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
  4. Department of Thermal Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  5. Department of Mechanical Engineering, Graphic Era Hill University, Dehradun, Uttarakhand-248002, India
  6. Department of Mechanical Engineering, Shivalik College of Engineering, Dehradun, India
  7. Department of Mechanical Engineering, U.P.E.S, Dehradun, India
  8. Department of Mechanical Engineering, Dr. A.P.J.A.K.I.T. Tanakpur, India
  9. Department of Mechanical Engineering, Motihari College of Engineering, Motihari, India
  10. Department of Mechanical Engineering, Bakhtiyarpur College of Engineering, Bakhtiyarpur Dedaur, Bakhtiyarpur, Patna, India
  11. Department of Mechanical Engineering, V.I.T., Vellore, India
Download PDF Download RIS Download Bibtex

Abstract

This study examines a steady laminar Casson fluid flow induced by a semi-infinite vertical plate under the impact of the Darcy-Forchheimer relation and thermal radiation. The features of mixed convection, cross-diffusion, radiation absorption, heat generation, chemical reactions and viscous dissipation are also considered to explain the transport phenomenon. The resultant system of equations, concerned with the problem under consideration, is transformed into a group of non-linear ordinary differential equations (ODEs) by means of similarity variables. The bvp4c method, an instrument popular for its numerical accomplishments, is utilized to solve this problem. The effect of flow parameters on heat transfer, concentration and velocity is evaluated via diagrams. To validate our code, we have compared the present outcomes to the prevenient literature, and stable consent has been detected. Moreover, the friction coefficient Cfx, Nusselt number Nux, and Sherwood number Shx are also computed to assess velocity gradient, efficiency of heat transfer and mass transfer process, respec-tively.
Go to article

Authors and Affiliations

Sonam
1
Rajendra Singh Yadav
1

  1. University of Rajasthan, Department of Mathematics, Jaipur, Rajasthan-302004, India
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the thermal instability of a three-dimensional boundary layer axisymmetric stagnation point flow towards a heated horizontal rotating disk is considered. A large number of works have been done on stability analysis. However, they did not check the thermal stability of the non-parallel-flow in the face of small disturbances that occur in the vicinity of the heated rotating disk. The governing equations of the basic flow are reduced to three coupled nonlinear partial differ-ential equations, and solved numerically with the fourth-order Runge-Kutta method. Thermal stability is examined by making use of linear stability theory based on the decomposition of the normal mode of Görtler-Hammerlin. The resulting eigenvalue problem is solved numerically using a pseudo-spectral method based on the expansion of Laguerre’s polyno-mials. The obtained results are discussed in detail through multiple configurations. As the main result, for large Prandtl numbers (Pr), the rotation disk parameter (Ω) has a destabilizing effect while for small Pr (around the unity) it tends to stabilize the basic flow. It was found that as the disk radius r→0, the flow is linearly stable, and the disturbances grow rapidly away from the stagnation point. For low values of Pr, the flow becomes more stable, and strong thermal gradients are necessary to destabilize it. However, an increase in Pr leads to a significant expansion of the instability region.
Go to article

Authors and Affiliations

Samir Mamache
1
Fatsah Mendil
1
Faiçal Nait Bouda
1

  1. Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), 06000 Bejaia, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of analysis of thermal-flow processes in the ejector-condenser for selected geometrical param-eters using CFD (Computational Fluid Dynamics) methods. The ejector-condenser is the water-driven, two-phase ejector responsible for creating a sub-pressure allowing exhaust gases (steam and CO2 mixture) to be entrained, condensing steam, and then increasing the pressure above the atmospheric conditions. The axisymmetric numerical model was developed to take into account multiphase, turbulent flow with steam condensation in the presence of inert gas. The influence of the selected geometrical parameters, such as the motive nozzle's and mixing chamber's diameters on the ejector performance was investi-gated. CFD analysis results are presented in the form of developed scalar distributions as well as pressure, temperature and steam mass flow changes along the flow path. Performances for different geometry modes were calculated and compared using parameters such as compression ratio, expansion ratio, mass entertainment ratio and condensation efficiency. The max-imum achieved compression ratio for the analyzed geometrical variants is 1.113 for the assumed mass entertainment ratio of 0.0295. The condensation efficiency varies in a range of 49.6%–91.4% depending on motive fluid inlet conditions and geom-etry mode.
Go to article

Authors and Affiliations

Tomasz Kuś
1
Paweł Madejski
1

  1. AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the thermodynamic analysis of a combined cycle gas turbine integrated with post-combustion carbon capture and storage using the solvent method is performed. The syngas obtained from the gasification of sewage sludge is mixed with methane and nitrogen-rich natural gas fuels at different proportions, used in the gas turbine, and the properties of fuel and flue gases are analyzed. The flue gas obtained from the fuel mixture is passed through the post-combustion carbon capture and storage at various load conditions to assess the heat and electricity required for the carbon capture process. The solvent used for the carbon capture from flue gases enables CO2 capture with the high efficiency of 90%. With the calculated results, the load conditions of flue gas using fuel mixtures are identified, which reduces the heat and power demand of post-combustion carbon capture and storage and provides the possibility to achieve neutral emission. The impact of selected operating conditions of post-combustion carbon capture and storage on the CO2 emission reduction process and on the power plant performances is investigated. Considering the factors of electricity generation, energy efficiency, heat supply to the consumers, operating load of post-combustion carbon cap-ture and storage and CO2 emission, the 50% mixture of syngas with both fuels performs better. Also, the use of a mixture of 2-amino-2methyl-1-propanol and piperazine with reboiler duty 3.7 MJ/kgCO2 in post-combustion carbon capture and storage slightly enhanced the performance of the power plant compared to the use of monoethanolamine with reboiler duty 3.8 MJ/kgCO2.
Go to article

Authors and Affiliations

Navaneethan Subramanian
1
Paweł Madejski
1

  1. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the inverse marching method used to determine the thermal stresses on the inner surface of a thick-walled cylindrical element not weakened by holes in the transient state. The heat conduction problem was considered one-dimensional, i.e. it was assumed that heat is transferred only in the radial direction. The method is based on measuring the temperature inside the pipeline wall at a single point and assuming that the pipeline is thermally insulated. The paper undertook an evaluation of the influence of the measuring point's distance from the inner surface, the number of control volumes into which the inverted area was divided and the length of the time step on the accuracy of the calculated temper-ature, heat transfer coefficient and thermal stresses on the inner surface of the pressure element. Verification was performed by comparing the calculation results obtained from the direct analytical method perturbed by random errors with those obtained from the numerical inverse step method.
Go to article

Authors and Affiliations

Magdalena Jaremkiewicz
1

  1. Cracow University of Technology, Faculty of Environmental and Energy Engineering, ul. Warszawska 24, Cracow 31-155, Poland
Download PDF Download RIS Download Bibtex

Abstract

Electrification of district heating and deep integration of sectors of national economies are fundamental elements of the future smart energy systems. This paper discusses the problem of optimal sizing of large-scale high-temperature heat pumps using treated sewage water as a heat source in a coal-fired district heating system. The study presents an approach to modelling of heat pump system that enables techno-economic analysis for investment decision making. Such analysis is enabled by a black-box-type identification model of the selected industrial heat pump. The model was developed based on the data generated by physical modelling of the heat pump using Ebsilon Professional software. In addition, it is proposed that the heat pump system is integrated with a dedicated photovoltaic power plant. The case study takes into consideration site-specific technical, economic, ecological, and legal constraints, weather conditions, hydraulic performance of the heat-ing network, and variability of loads within the sewage and the district heating systems. The results revealed that the proposed modelling approach is effective regarding multiple simulations and system optimisation. In addition, it was found that large-scale heat pump projects can be technically feasible and profitable if the heat pump is appropriately sized and operated. In the given case, the optimum size of the heat pump for a city of around 180 000 inhabitants is around 12 MW under maximum winter load.
Go to article

Authors and Affiliations

Jacek Kalina
1

  1. Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

There is no doubt that the miniaturization of various electronic devices, including processors, servers, micro-electromechan-ical system devices, etc. has resulted in increased overall performance. However, there is a major problem with thermal management in these devices, as well as in many others. One of the most promising solutions is liquid cooled microchannel heat sink. In the current work, different cases of open micro pin-fin configurations of heat sink were considered. The con-figurations considered were a uniform height micro pin-fin heat sink, three-stepped unidirectional micro pin-fin heat sink and three-stepped bi-directional micro pin-fin heat sink. These configurations were also oriented in two dissimilar fashions, i.e. inline and staggered, so the total of six heat sink configurations are compared and analysed. Using single phase water as a coolant and copper as a substrate, these configurations were simulated numerically for different Reynolds numbers (10−160) under heat flux of 500 kW/m2. It can be concluded that at low Reynolds numbers, steepness does not contribute much in both inline and staggered arrangements, while at higher Reynolds numbers, 3 stepped staggered configurations has revealed the best performance due to boosted fluid mixing and more projecting secondary flow. Furthermore, bi-direction-ality in steepness shows augmented performance only in inline arrangement.
Go to article

Authors and Affiliations

Prabhakar Bhandari
1
Bhavesh Vyas
2
Diwakar Padalia
3
Lalit Ranakoti
4
Yogesh Kumar Prajapati
5
Raghubeer Singh Bangari
6

  1. Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram-122103, Haryana, India
  2. Department of Electrical and Electronics Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram-122103, Haryana, India
  3. Department of Physics, School of Basic and Applied Sciences, K. R. Mangalam University, Gurugram-122103, Haryana, India
  4. Department of Mechanical Engineering, Graphic Era Deemed to Be University, Dehradun-248002, Uttarakhand, India
  5. Department of Mechanical Engineering, BIT Sindri, Dhanbad-828123, Jharkhand, India
  6. Department of Mechanical Engineering, Graphic Era Hill University, Dehradun-248002, Uttarakhand, India
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates entropy generation rate in a temperature-dependent variable viscosity unsteady nanofluid flow past a convectively heated impulsively moving permeable cylindrical surface. The governing equations based on the modified Stokes first problem assumption are obtained and transformed using appropriate similarity variables into nonlinear ordinary differential equations. The numerical shooting method together with the Runge-Kutta Fehlberg integration scheme are employed to effectively solve the problem. The effects of related parameters on the nanofluid velocity, temperature, skin friction, Nusselt number, entropy generation rate and Bejan number are displayed graphically and quantitatively explained. It is found that an upsurge in nanoparticles volume fraction enhances the skin friction, Nusselt number, entropy production rate and the Bejan number.
Go to article

Authors and Affiliations

Itumeleng Chokoe
1
Oluwole Daniel Makinde
1
Ramotjaki Lucky Monaledi
1

  1. Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha, 7395, South Africa
Download PDF Download RIS Download Bibtex

Abstract

Indeed, nanofluids have garnered significant interest in various fields due to their numerous advantages and potential ap-plications. The appeal of SiO2 nanofluid, in particular, lies in its low preparation cost, simple production process, controlled chemistry, environmental safety and its exceptional ability to be homogeneously suspended in the base fluid, which makes it a promising candidate for a variety of applications. In this study, we investigate the flow analysis of a water based silicon dioxide nanofluid, passing over a stretched cylinder while subjected to a continuous magnetic field, including Joule heating effects. The research involves the development of a mathematical model and the formulation of governing equations rep-resented as partial differential equations. These equations are subsequently transformed into non-linear ordinary differential equations through suitable transformations. To obtain a numerical solution, the MATLAB bvp4c solver technique is em-ployed. The study investigates the implications of dimensionless parameters on velocity and thermal distributions. It is observed that the velocity distribution f'(η) exhibits a direct relationship with the volumetric fraction ϕ and an inverse relationship with the unsteadiness parameter S, the magnetic parameter M, and the temperature distribution θ(η) shows an enhancement for the increasing ϕ and M, as well as the Eckert number. However, it declines against S and the Prandtl number. The results for local Nusselt number and skin frictions are depicted in Tables.
Go to article

Authors and Affiliations

Ramzan Ali
1
Azhar Iqbal
2
Tasawar Abbass
2
Touqeer Arshad
3
Azeem Shahzad
4

  1. University of Doha for Science and Technology, College of General Education, Department of Mathematics, Doha, Qatar
  2. Department of Mathematics, University of Wah, Wah Cantt, 47040, Pakistan
  3. Department of Basic Sciences, University of Engineering and Technology, Taxila,47050, Pakistan
  4. Department of Mathematical Sciences, University of Engineering and Technology, Taxila,47050, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This article explores the phenomenon of natural convection in the rotatory flow of Cu-water nanofluid under the influence of non-uniform heat source. In order to design more effective and efficient cooling systems, this work attempts to increase our understanding of how nanofluids behave in the presence of non-uniform heat sources, convection, and rotatory force. The higher order partial differential equations governing the flow are remodelled into ordinary differential equations using similarity transformations. The remodelled equations were solved using shooting methodology and the Lobatto-III A algorithm. The impacts of various parameters such as the Richardson number (1 < Ri < 4), the Schmidt number (0.5 < Sc < 2), nanoparticle’s volume fraction (0.02 < ϕ < 0.08), etc. on velocity, concentration and temperature was ana-lysed. One of the main findings of this analysis was study of the impact of the space dependent heat source (0.2 ≤ A ≤ 1) and the temperature dependent internal heat source (0 ≤ B ≤ 0.5) on the heat regulation. Furthermore, increasing the quantity of the nano-additives and improving the fluid’s thermophysical properties intensified the acceleration of the fluid elements in the flow region. The presence of spatial and temperature-sensitive parameters facilitated quantification of the effects of a standard and variable heat source in combination of Coriolis force in the case of a Cu-water flow. The findings of the investigation will be helpful in the process of medical, architectural planning systems, oil recovery systems and so on.
Go to article

Authors and Affiliations

Alfunsa Prathibaa
1
P. Johnson Babub
2
Manthri Sathyanarayanac
3
B. Tulasi Lakshmi Devid
4
Shanker Bandarie
5

  1. Department of Mathematics, CVR College of Engineering, Hyderabad, India
  2. Department of Physics and Electronics, St. Joseph’s Degree & PG College, 5-9-1106 King Koti, Main Road, Hyderabad - 500029, Telangana, India
  3. Department of Mathematics & Statistics, St.Joseph's Degree & PG College, 5-9-1106 King Koti, Main Road, Hyderabad - 500029, Telangana, India
  4. Department of Mathematics, Koneru Lakshmaiah Education Foundation, Telangana, India
  5. Department of Humanities and Sciences, CVR College of Engineering, Telangana, India
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work is to discuss the effect of varying thermal conductivity in a semiconducting medium under photothermal theory. An infinite elastic half-space is overlying the infinite semiconducting medium, and a constant me-chanical force is applied along the interface. The normal mode analysis method is applied to find the analytic components of displacement, stress, carrier density and temperature distribution. It was found that all physical quantities are affected by variable thermal conductivity. The novelty of the paper lies in the fact that no such a problem of variable thermal conductivity has been discussed by any researcher so far.
Go to article

Authors and Affiliations

Praveen Ailawalia
1
Priyanka
2

  1. Department of Mathematics, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
  2. I.G.N College, Ladwa, Haryana, India
Download PDF Download RIS Download Bibtex

Abstract

The present study explores the characteristics of reacting flow in a scramjet combustor with struts, focusing particularly on implementing different injection strategies. A three-dimensional DLR scramjet combustor is utilised to assess the impact on the system, incorporating multiple injections and varying injection angles on the triangular wedge. The analysis considers three injectors with parallel, upward and downward injections at angles of 15° and 30°. The numerical investigation is con-ducted under a constant total pressure of 7.82 bar, a temperature of 340 K, and an airspeed of Mach 2 at the inlet. The results highlight the significance of injector location and shape in promoting flame stabilization. Furthermore, injection angles play a crucial role in mitigating shockwave intensity. The numerical analysis involves a steady-state Reynolds-averaged Navier-Stokes equation with the shear stress transport k–ω turbulence model. The obtained results were analyzed by examining the critical variables such as Mach number, static pressure and combustion efficiency across the combustor. Based on the com-putational results, injecting fuel upward not only increases the overall pressure loss but also enhances the subsonic regime downstream of the strut, which leads to better mixing and combustion efficiencies. This is primarily due to shockwave generation from the edges of the strut and the interactions with the fuel stream shear layers.
Go to article

Authors and Affiliations

Venkateshwaran Vanamamalai
1
Padmanathan Panneerselvam
1

  1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu- 632014, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents a comprehensive computational fluid dynamics analysis of the adsorption and desorption cycles in adsorption refrigeration systems, focusing on the impact of the adsorbent bed geometry. The entire adsorption/desorption cycle has been modeled, allowing for the observation of events during the transitional period between processes and how these influence their progression. This approach is a novelty in the field. The developed numerical model was verified against experimental data available in the literature, demonstrating excellent convergence with the experiment, with a de-viation not exceeding 2%. The study illustrates how the geometrical parameters such as height and length of the bed affect the efficiency of the adsorption and desorption processes, emphasizing the importance of bed geometry in the adsorption of heat and mass exchangers in energy and adsorbate transfer. The research findings provide valuable insights for designing more efficient cooling devices using adsorption technology, highlighting the role of bed geometry in optimizing these systems. Modeling the entire adsorption/desorption cycle is a novelty and allows for the observation of what happens during the transitional period between processes and how this influences their progression.
Go to article

Authors and Affiliations

Szymon Janusz
1 2
Marcin Borcuch
2
Piotr Cyklis
1

  1. Cracow University of Technology, Jana Pawla II 37, 31-864 Kraków, Poland
  2. M.A.S. Sp z o.o., Research and Development Department, Składowa 34, 27-200 Starachowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a modified in-house model for calculating heat transfer coefficients during flow condensation, which can be applied to a variety of working fluids, but natural refrigerants in particular, at full range thermodynamic parameters with a particular focus on increased saturation pressure. The modified model is based on a strong physical basis, namely the hypothesis of analogy between the heat transfer coefficient and pressure drop in two-phase flow. The model verification is based on a consolidated database that consists of 1286 data points for 7 natural refrigerants and covers the reduced pressure range (the ratio of critical pressure and saturation pressure) from 0.1 to 0.8 for different mass velocities and diameters. The new version of the in-house model, developed earlier by Mikielewicz, was compared with 4 other mathe-matical models widely recommended for engineering calculations and obtained the best consistency results. The value of the mean absolute percentage error was 28.13% for the modified model, the best result among the scrutinised methods.
Go to article

Authors and Affiliations

Stanisław Głuch
1
Dariusz Mikielewicz
1

  1. Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

This page uses 'cookies'. Learn more