Silicon (Si) is the second most abundant element present in the lithosphere, and it constitutes one of the major inorganic nutrient elements of many plants. Although Si is a nonessential nutrient element, its beneficial role in stimulating the growth and development of many plant species has been generally recognized. Silicon is known to effectively reduce disease severity in many plant pathosystems. The key mechanisms of Si-mediated increased plant disease resistance involve improving mechanical properties of cell walls, activating multiple signaling pathways leading to the expression of defense responsive genes and producing antimicrobial compounds. This article highlights the importance and applicability of Si fertilizers in integrated disease management for crops.
Bollworms comprise the most harmful and economically relevant species of lepidopteran. Helicoverpa gelotopoeon (D.) (Lepidoptera: Noctuidae) is native to America and affects many crops. Tobacco is an industrial crop in which methods of pest control rely mainly on the application of insecticides. To develop new eco-friendly strategies against insect pests it is very important to overcome the side effects of insecticides. The utilization of fungal entomopathogens as endophytes is a new perspective that may accomplish good results. The present study aimed to evaluate the ability of endophytic Beauveria bassiana (Bals.-Criv.) Vuill. to affect H. gelotopoeon life parameters and feeding behavior on tobacco plants. Beauveria bassiana LPSC 1215 as an endophyte did not reduce the amount of vegetal material consumed by H. gelotopoeon larvae but affected the life cycle period of the plague, particularly the larval and adult stages. Also, egg fertility was affected since adults laid eggs that were not able to hatch. The results of this investigation provide new information on endophytic entomopathogen potential to be incorporated in Integrated Pest Management (IPM) programs.
The cotton aphid, Aphis gossypii is an economically significant insect pest infesting various important crops and vegetables. The neonicotinoid, acetamiprid was recommended against aphids with excellent results. Resistance emergence and environmental pollution makes acetamiprid a favorable alternative to conventional insecticides. The aims of the present work were to predict acetamiprid resistance risk in A. gossypii, investigate cross resistance to other tested insecticides and explore acetamiprid stability in the absence of selection. A field-collected population from Sharqia governorate, Egypt was selected with acetamiprid. After 16 generations of selection, there was a 22.55-fold increase in LC50 and the realized heritability (h2) of resistance was 0.17. Projected rates of resistance indicated that, if h2 = 0.17 and 50% of the population was killed at each generation, then a tenfold increase in LC50 would be expected in 12.2 generations. If h2 was 0.27 then 7.63 generations would be needed to achieve the same level. In contrast, with h2 of 0.07 it necessitates about 30 generations of selection to reach the same level. Cross resistance studies exhibited that the selected strain showed obvious cross resistance to the other tested neonicotinoid members, moderate cross resistance to alpha-cypermethrin and no cross resistance to pymetrozine. Fortunately, resistance to acetamiprid in the cotton aphid was unstable and resistance reverses the nearby susceptible strain throughout five generations without exposure to acetamiprid. Our results exhibited cotton aphid potential to develop resistance to acetamiprid under continuous selection pressure. The instability of acetamiprid makes A. gossypii amenable to resistance management tactics such as rotation with pymetrozine.
Barley scald, caused by Rhynchosporium commune is one of the most prevalent diseases in barley (Hordeum vulgare L.) worldwide. The primary loss from scald is reduced yield, which can exceed 25% in dry areas. In our earlier studies, we developed a low-resolution linkage map for recombinant inbred lines of the cross Tadmor/WI2291. Quantitative trait loci (QTLs) for scald were localized on chromosomes 2H and 3H flanked by Simple Sequence Repeat (SSR) markers HVM54 and Bmac0093b on 2H and HVLTPP8, HVM62 and Bmag0006 on 3H. These chromosome 3H markers were found to be located close to the Rrs1 − R. commune resistance gene(s) on chromosome 3H. In this study, 10 homozygous resistant and 10 homozygous susceptible plants each from the F7 population of Tadmor/ Sel160, a panel of 23 barley varieties used routinely in the International Centre for Agricultural Research in the Dry Areas (ICARDA) breeding program and three populations were used for scald resistance screening using 25 DNA markers that are located very close to scald resistance gene(s) on barley chromosomes. Only five of those markers clearly discriminated co-dominantly between resistant and susceptible plants. These markers, Ebmac0871- SSR, HVS3-SCAR, Bmag0006-SSR, reside on different arms of barley chromosome 3H. Ebmac871 is localized on the short arm of 3H and HVS3 and Bmag0006 are localized on the long arm of 3H. This result indicates that the scald resistance genes which they tag are probably close to the centromeric region of this chromosome. Scald resistance from several sources map to the proximal region of the long arm of chromosome 3H, forming the complex Rrs1 locus. The availability of highly polymorphic markers for the discrimination of breeding material would be extremely useful for barley breeders to select for the trait at the DNA level rather than relying on phenotypic expression and infection reaction.
The “second generation” of glyphosate-tolerant soybean (GT2 soybean) was developed through a different technique of insertion of the glyphosate-insensitive EPSPs gene, in comparison with “first generation” of glyphosate-tolerant soybean. However, there is not enough information available about glyphosate selectivity in GT2 soybean and the effects on the quality of seeds produced. The aim of this study was to evaluate tolerance to glyphosate and seed quality of soybean cultivar NS 6700 IPRO (GT2) with cp4-EPSPs and cry1Ac genes, after application at post-emergence (V4). The experiment was conducted in a randomized block design with four replicates and seven treatments, or rates of glyphosate (0; 720; 1,440; 2,160; 2,880; 3,600; 4,320 g of acid equivalent − a.e. · ha−1). Assessments were performed for crop injury, SPAD index and variables related to agronomic performance and seed quality. A complementary trial with the same cultivar and treatments in a greenhouse was conducted in a completely randomized design with four replications. Data analysis indicated no significant effect of glyphosate on V4 on agronomic performance and physiological quality of seeds, for two growing seasons. The soybean cultivar NS 6700 IPRO (GT2), with cp4-EPSPs and cry1Ac genes, was tolerant to glyphosate up to the maximum rate applied (4,320 g a.e. · ha−1) at post-emergence (V4). The quality of soybean seeds was not affected by glyphosate up to the maximum rate applied (4,320 g a.e. · ha−1) at post-emergence (V4).
Pseudomonas syringae pv. syringae (Pss) constitutes a diverse group of bacterial strains that cause canker of stone fruits, blight of cereals and red streak of sugarcane. The purpose of this study was to determine how diverse Iranian strains of Pss are when they come from different hosts. We compared a total of 32 Pss strains isolated from stone fruits, barley, wheat and sugarcane from different geographical regions of Iran based on their phenotypic and molecular properties. Strains showed some variation regarding carbon and nitrogen utilization. Pss strains were similar in their protein banding patterns. Additional bands were found in sugarcane strains. Most strains showed one indigenous plasmid DNA and a few had two and some none. The genes of syrB and syrD encoding syringomycin synthesis and secretion, respectively, were amplified using specific primers in polymerase chain reaction. Syringomycin, producing strains amplified two DNA fragments of 752 and 446 bp representing syrB and syrD genes, respectively. Primer specificity was shown for Pss using various genera. Based on the results of this study, it is suggested that Pss strains from different hosts and geographical regions show diversity in phenotypic and molecular characters. It is thought that phenotypic variation is due to adaptation to specific hosts and niches for survival and pathogenicity.
This work was carried out during two successive seasons (2016 and 2017) on cucumber fruits from a plastic greenhouse and from open field cultivation in El Gharbeia and El Giza Governorates, Egypt. Isolation trials from spoilage fruit samples of plastic greenhouse cultivation recorded high frequency of Alternaria tenusinium, Fusarium spp. and Pleospora alli. The most common fungi of rotten cucumber fruits from an open field were Galactomyces spp. and Fusarium spp. Pathogenicity tests proved that, Fusarium solani from El-Gharbeia followed by A. tenusinium from El-Giza were the most frequent isolates responsible for rot of cucumber fruits from plastic greenhouse cultivation. Moreover, the most frequent isolates causing postharvest disease of cucumber fruits of the open field were Galactomyces candidium from El-Giza followed by Geotrichum sp. and F. fujikuroi from El-Gharbeia Governorates, respectively. This is the first report of several fungi causing postharvest fruit rot disease of cucumber i.e., G. candidium, Geotrichum sp., A. tenusinium, P. alli and Fusarium spp. (F. fujikuroi, F. verticiolides, F. solani, F. geraminearium and Fusarium incarnatum). Fungal isolates were identified according to cultural, morphological and molecular characterization based on sequencing of internal transcribed spacer1 (ITS1). All the ITS nucleotide sequences of fungi were applied and conserved in GenBank.
In this study the effect of different grassland managements (cattle grazing with different intensities and mowing) on soil mesofauna, i.e. mites (Acari) and springtails (Collembola), was studied. Mites and springtails are the most numerous representatives of soil mesofauna organisms living in the upper soil layers (up to 5 cm). Soil mesofauna groups or species are commonly used as bioindicators of soil health. The experiment was carried out from 2007 to 2009 in the West Sudety Mountains, Poland. Pastures and meadows were under organic farming management, without pesticides or synthetic fertilizers, and restricted livestock density. Soil samples were taken three times a year (in May−June, July and October) from pastures grazed at different frequencies: once, twice and four times a year, alternate management (grazed and mown pasture) and mown meadow. Mites were identified according to orders or suborders (Oribatida, Gamasida, Prostigmata, Astigmata), while springtails to the species level. The data were analysed using a general linear model (GLM). The mesofauna taxa in relation to the treatment and date were analysed with the canonical correspondence analysis (CCA). The data from three years showed that most soil mesofauna assemblages occurred in significantly higher numbers on the pasture grazed once or twice and on alternate managed pasture than in pasture grazed four times a year and mown meadow. The CCA analysis showed the preference of most springtail species to pasture grazed once a year, while mites preferred pasture grazed twice a year and alternate management. The number of species and the abundance of the most numerous species (Protaphorura pannonica, Desoria multisetis and Folsomides parvulus) did not differ significantly between treatments. To summarize, cattle grazing once or twice a season or alternate management (grazing and mowing once a season) have a positive impact on soil mesofauna.
The molluscicidal activity of six monoterpenes and two phenylpropenes against Theba pisana adults was evaluated using fumigation and direct contact methods. In the fumigant toxicity assay, (-)-citronellal showed the highest toxicity with LC50 value of 7.79 μl · l−1 air after 24 h of treatment, followed by (-)-terpinen-4-ol (LC50 = 12.06 μl · l−1), (-)-menthone (LC50 = 12.28 μl · l−1 air) and p-cymene (LC50 = 16.07 μl · l−1 air). Eugenol and trans-cinnamaldehyde were the most potent contact toxicants against T. pisana. Their LD50 values were 0.18 and 0.29 mg · snail−1 after 24 h of treatment, respectively. These two compounds were more toxic than a reference molluscicide, methomyl. In contrast, α-terpinene and (-)-citronellal were the least toxic compounds. In another experiment, the synergistic effect of piperonyl butoxide (PBO) on tested monoterpenes and phenylpropenes by topical application was examined. The results showed that the toxicity of the tested compounds was increased when mixed with PBO at a ratio [compound/PBO (1 : 2)] except for α-pinene and (-)-terpinen-4-ol in which the toxicity of binary mixtures was less than for single compounds. The synergistic effect of PBO improved with increased exposure time. The highest synergistic effect was observed with (-)-menthone and α-terpinene with synergistic ratios of 9.25 and 4.37, respectively. Monoterpenes and phenylpropenes and their mixtures with PBO described herein merit further studies as potential T. pisana control agents.
Eyespot is one of the most important fungal diseases of the stem base of wheat (Triticum aestivum L.). The presented study clearly demonstrated that the Pch1 gene was the main effective source for reducing the eyespot disease score in the analyzed winter wheat lines. Nevertheless, Pch1 was present only in 8−9% of the investigated lines. Using an isoenzymatic marker and molecular markers, the presence of the Pch1 gene and lack of the Pch2 gene was identified in six lines. Two lines, SMH 9409 and DL 358/13/4, were polymorphic in an isoenzymatic marker study. In the remaining three lines, C 3373/11-1, KBH 15.15 and KBP 1416, the Pch1 gene was identified only with the use of an isoenzymatic marker. Both genes Pch1 and Pch2, as well as the resistant variety Rendezvous, were found in three lines: DD 248/12, KBP 15.2 and STH 4431. In line DD 708/13, the presence of the Pch1 and Pch2 genes was identified, where the association between the Pch1 and the locus of the Xorw5 marker was broken. It was shown that the presence or absence of Pch1 and Pch2 genes did not significantly affect the grain yield (from the plot), although the yield was highest in the presence of both genes. A significant effect of the presence of the Pch1 gene on thousand kernel weight (TKW) was observed. Lines with the Pch1 gene showed significantly higher TKW values than lines without both genes or with the Pch2 gene only.
The tuber necrotic strain of Potato virus Y (PVYNTN) causes widespread disease and has severe negative effects on the growth and yields of plants, especially those of the Solanaceae family. The consequences of residual toxicity and non-biodegradation of synthetic chemicals and pollution of the environment has led to investigations into new non-toxic and biological treatments to control plant viral diseases. Ethanolic extracts of Bowiea volubilis (bulbs), Cotyledon orbiculata (leaves), Gomphocarpus fruticosus (leaves), Merwilla plumbea (dry and fresh bulbs), Nerium oleander (leaves), and the fruits and leaves of Strophanthus speciosus, were evaluated against PVYNTN in vivo and in vitro. At a concentration of 20 mg · ml−1, ethanolic extracts of Strophanthus speciosus (leaves) and fruits (50 mg · ml−1) significantly reduced the expression of PVYNTN symptoms on tobacco plants in vitro without affecting the normal growth and development of the plant. Similarly, at 50 mg · ml−1, N. oleander, C. orbiculata and B. volubilis (fresh bulbs) and S. speciousus leaves at 20 mg · ml−1 extracts showed significant differences in PVYNTN symptoms in the in vivo experiment. Strophanthus speciosus leaf and fruit extracts showed significant inhibition in the in vitro and in vivo assays and demonstrated that S. speciosus has potential to be used as an antiphytoviral treatment.
Two field experimental trials were carried out in central Italy, in 2005 and 2006, on biomass sorghum [Sorghum bicolor (L.) Moench] in order to assess weed control efficacy and selectivity to the crop of some pre- and post-emergence herbicides applied at different doses and in different mixtures. All herbicides showed good selectivity to the crop, although postemergence treatments showed higher transitory phytotoxicity effects than pre-emergence treatments, especially when high temperatures occurred after treatments, decreasing the selectivity of leaf herbicides (i.e. MCPA, 2,4-D, bromoxynil and dicamba). Considering pre-emergence applications, terbuthylazine alone against broadleaves or in mixtures at low doses with s-metolachlor against mixed infestations (grasses + broadleaves), seemed to be the best options to obtain a good selectivity to the sorghum and a high weed control level. Aclonifen showed some limits in terms of weed spectrum and could be recommended only against simplified broadleaf weed infestations without the presence of less susceptible weeds, like Amaranthus retroflexus, Portulaca oleracea and Solanum nigrum. Propachlor seemed not to be advisable due to the low efficacy against all the major broadleaf warmseason weed species in the Mediterranean areas. Considering post-emergence applications, all treatments gave quite similar results in terms of weed control, although, the mixture of terbuthylazine + bromoxynil seemed to be the best option due to bromoxinil’s higher efficacy than other foliar herbicides, such as MCPA, 2,4-D and dicamba, which can increase the efficacy of terbuthylazine alone especially under dry weather conditions. There were no significant differences in sorghum biomass between herbicide treatments, although, the more selective pre-emergence treatments showed, on average, a higher biomass yield value than the less selective post-emergence treatments. For these reasons, biomass values seemed to be more related to herbicide selectivity than to herbicide efficacy, especially in cases of scarce competitiveness of weed flora.
This research was conducted to investigate the natural, quantitative composition of the most common Fusarium species directly in fields of northeastern Poland. The concentration of Fusarium spp. and grain quality traits (yield, 1,000 kernel weight, test weight, grain moisture, ergosterol content, protein content, gluten content and starch content) were compared in four wheat varieties (Mandaryna, Struna, Kandela and Arabella). Obtained results indicated a relation between grain moisture, test weight, ergosterol content, yield and fungi concentration. Protein, starch and gluten content was similar in all wheat varieties. Fusarium culmorum was the most common pathogen in Mandaryna and Struna and F. graminearum in Kandela and Arabella. Fusarium avenaceum and F. poae occurred in low amounts in all wheat varieties except Mandaryna. Fusarium oxysporum was found in comparable concentrations in Struna, Kandela and Arabella. Struna despite medium Fusarium spp. colonization possessed the most desirable grain quality compared to other varieties. We carried out real-time PCR detection of Fusarium spp. which is an efficient, cost effective and time saving method in evaluating the development of fungal diseases which are not visible in standard observations.
The effect of monoterpenoid 1,8-cineol on the toxicity and physiology of elm leaf beetle, Xanthogaleruca luteola Müller under laboratory conditions (26 ± 1°C, 65 ± 10% RH and 16L : 8D h) was investigated. Initially, LC30 and LC50 values of the constituent were estimated to be 23.5 ppm and 31.9 ppm for the last instar larvae after 48 h, respectively. Significant changes were observed in the values of relative growth rate (RGR), efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), approximate digestibility (AD) and consumption index (CI) between control and treated larvae with 1,8-cineol. The amounts of protein, glucose and urea decreased in the treated larvae in comparison with control. Similar findings were observed in the activities of alkaline phosphatase and lactate dehydrogenase while the activities of glutathione S-transferase and esterase significantly increased in the treated larvae using CDNB and α-naphtyl acetates as the substrates. Morphological and histological changes brought about by 1,8-cineol in the present study are indicative of growth inhibition targeting specific organs such as those of reproduction. We believe that 1,8-cineol can be considered as a safe and environmentally friendly compound.
Anthracnose disease caused by Colletotrichum lindemuthianum (Sacc. and Magnus) Lams-Scrib is one of the most devastating seed-borne diseases of common bean (Phaseolus vulgaris L.). In the present study, we evaluated the antifungal activity of Bunium persicum essential oil (EO) and its main constituents on mycelial growth, sporulation and spore germination inhibition of C. lindemuthianum. The main objective of this study was to investigate the effect of EO and its main constituents on decreasing the activity of cell wall degrading enzymes (CWDEs) produced by C. lindemuthianum, which are associated with disease progress. Also, the effects of seed treatment and foliar application of EO and its main constituent, cuminaldehyde, on anthracnose disease severity was investigated. The essential oil of B. persicum, was obtained by using a clevenger apparatus and its major constituents were identified by gas chromatography-mass spectrometry (GC-MS). The EO was characterized by the presence of major compounds such as cuminaldehyde (37.7%), γ-terpinene (17.1%) and β-pinene (15.4%), which indicated antifungal effects against C. lindemuthianum. This pathogen did not grow in the presence of EO, cuminaldehyde and γ-terpinene, β-pinene at 1,500; 1,010 and 1,835 ppm concentrations, respectively. Also, sporulation and spore germination of C. lindemuthianum was completely inhibited by EO and cuminaldehyde. Synergistic effects of the main constituents showed that combing γ-terpinene with cuminaldehyde induced a synergistic activity against C. lindemuthianum and in combination with β-pinene caused an additive effect. Activities of pectinase, cellulase and xylanase, as main CWDEs, were decreased by EO and its main constituents at low concentration without affecting mycelial growth. Seed treatment and foliar application of peppermint EO and/or cuminaldehyde significantly reduced the development of bean anthracnose. We introduced B. persicum EO and constituents, cuminaldehyde and γ-terpinene, as possible control agents for bean anthracnose.