[1] J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, and K. Liu. A review on machining of carbon fiber reinforced ceramic matrix composites.
Ceramics International, 45(15):18155–18166, 2019. doi:
10.1016/j.ceramint.2019.06.112.
[2] N.R.M. Akmam, M. Mullah, and M.Z. Zakaria. Study on tool wear mechanism during milling of JFRP composite.
International Journal of Science and Engineering Investigations, 9(98):20–26, 2020.
[3] D. Geng, Y. Liu, Z. Shao, Z. Lu, J. Cai, X. Li, X. Jiang, and D. Zhang. Delamination formation, evaluation and suppression during drilling of composite laminates: A review.
Composite Structures, 216:168–186, 2019. doi:
10.1016/j.compstruct.2019.02.099.
[4] G. Rajaraman, S.K. Agasti, and M.P. Jenarthanan. Investigation on effect of process parameters on delamination during drilling of kenaf-banana fiber reinforced in epoxy hybrid composite using Taguchi method.
Polymer Composites, 41(3):994–1002, 2020. doi:
10.1002/pc.25431.
[5] M. Ramesh and A. Gopinath. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites.
IOP Conference Series: Materials Science and Enginierring, 197:012056, 2017. doi:
0.1088/1757-899X/197/1/012056.
[6] U.H. Babu, N.V. Sai, and R.K. Sahu. Artificial intelligence system approach for optimization of drilling parameters of glass-carbon fiber/polymer composites.
Silicon, 13:2943–2957, 2021. doi:
10.1007/s12633-020-00637-5.
[7] W. Li, A. Dichiara, and J. Bai. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites.
Composites Science and Technology, 74:221–227, 2013. doi:
10.1016/j.compscitech.2012.11.015.
[8] S.G. Ghalme, Y. Bhalerao, and K. Phapale. Analysis of factors affecting delamination in drilling GFRP composite.
Journal of Computational and Applied Research in Mechanical Engineering, 10(2):281–289, 2021. doi:
10.22061/jcarme.2019.4397.1530.
[9] S. Manteghi, A. Sarwar, Z. Fawaz, R. Zdero, and H. Bougherara. Mechanical characterization of the static and fatigue compressive properties of a new glass/flax/epoxy composite material using digital image correlation, thermographic stress analysis, and conventional mechanical testing.
Materials Science and Engineering: C, 99:940–950, 2019. doi:
10.1016/j.msec.2019.02.041.
[10] J. Samuel, A. Dikshit, R.E. DeVor, S.G. Kapoor, and K.J. Hsia. Effect of carbon nanotube (CNT) loading on the thermomechanical properties and the machinability of CNT-reinforced polymer composites.
Journal of Manufacturing Science and Engineering, 131(3):031008, 2009. doi:
10.1115/1.3123337.
[11] A. Babu Arumugam, V. Rajamohan, N. Bandaru, E.P. Sudhagar, and S.G. Kumbhar. Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams.
Archives of Acoustics, 44(2):309–320. doi:
.
[12] X. Wang, Q. Zheng, S. Dong, A. Ashour, and B. Han. Interfacial characteristics of nano-engineered concrete composites.
Construction and Building Matererials, 259:119803, 2020. doi:
10.1016/j.conbuildmat.2020.119803.
[13] A.K. Chakraborty, T. Plyhm, M. Barbezat, A. Necola, and G.P. Terrasi. Carbon nanotube (CNT)-epoxy nanocomposites: A systematic investigation of CNT dispersion.
Journal of Nanoparticle Research, 13:6493–6506, 2011. doi:
10.1007/s11051-011-0552-3.
[14] D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray. Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content.
Composites Part A: Applied Science and Manufacturing, 84:364–376, 2016. doi:
10.1016/j.compositesa.2016.02.020.
[15] L. Sun, Y. Zhao, Y. Duan , and Z. Zhang. Interlaminar shear property of modified glass fiber-reinforced polymer with different MWCNTs.
Chinese Journal of Aeronautics, 21(4):361–369, 2008. doi:
10.1016/S1000-9361(08)60047-3.
[16] A. Esmaeili, C. Sbarufatti, andA.M.S. Hamouda. Investigation of mechanical properties of MWCNTs doped epoxy nanocomposites in tensile, fracture and impact tests.
Materials Science Forum, 990:239–243, 2020. doi:
10.4028/www.scientific.net/msf.990.239.
[17] A. Tabatabaeian and A.R. Ghasemi. The impact of MWCNT modification on the structural performance of polymeric composite profiles.
Polymer Bulletin, 77:6563–6576, 2020. doi:
10.1007/s00289-019-03088-0.
[18] A. Gaurav and K.K. Singh. Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation.
Composites Part B: Engineering, 172:83–96, 2019. doi:
10.1016/j.compositesb.2019.05.069.
[19] B. Shivamurthy, S. Anandhan, K.U. Bhat, and B.H.S. Thimmappa. Structure-property relationship of glass fabric/MWCNT/epoxy multi-layered laminates.
Composites Communications, 22:100460, 2020. doi:
10.1016/j.coco.2020.100460.
[20] A. Uysal. Evaluation of drilling parameters on surface roughness and burr when drilling carbon black reinforced high-density polyethylene.
Journal of Composite Materials, 52(20):2719–2727, 2018. doi:
10.1177/0021998317752505.
[21] F. Susac and F. Stan. Experimental investigation, modeling and optimization of circularity, cylindricity and surface roughness in drilling of PMMA using ANN and ANOVA.
Materiale Plastice, 57(1):57–68, 2020. doi:
10.37358/MP.20.1.5312.
[22] P. Czarnocki and T. Zagrajek. Growth stability analysis of embedded delaminations with the use of FE node relocation procedure and effective resistance curve concept.
Archive of Mechanical Engineering, 67(4):415–433, 2020. doi:
10.24425/ame.2020.131702.
[23] L. Liu, C. Qi, F. Wu, X. Zhang, and X. Zhu. Analysis of thrust force and delamination in drilling GFRP composites with candle stick drills.
The International Journal of Advanced Manufacturing Technology, 95:2585–2600, 2018. doi:
10.1007/s00170-017-1369-8.
[24] M.P. Jenarthanan and R. Jeyapaul. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method.
International Journal of Engineering, Science and Technology, 5(4):23–36. doi:
10.4314/ijest.v5i4.3.
[25] P. Raveendran and P. Marimuthu. Multi-response optimization of turning parameters for machining glass fiber-reinforced plastic composite rod.
Advances in Mechanical Engineering, 7:1–10, 2015. doi:
10.1177/1687814015620109.
[26] D.I. Poór, N. Geier, C. Pereszlai, and J. Xu. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges.
Composites Part B: Engineering, 223:109155, 2021. doi:
10.1016/j.compositesb.2021.109155.
[27] R. Higuchi, S. Warabi, W. Ishibashi, and T. Okabe. Experimental and numerical investigations on push-out delamination in drilling of composite laminates.
Composites Science and Technology, 198:108238, 2020. doi:
10.1016/j.compscitech.2020.108238.
[28] J. Kumar, R.K. Verma, and A.K. Mondal. Predictive modeling and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber.
Archive of Mechanical Engineering, 67(2):229–258. doi:
10.24425/ame.2020.131692.
[29] N. Hoffmann, G.S.C. Souza, A.J. Souza, and V. Tita. Delamination and hole wall roughness evaluation in air-cooled drilling of carbon fiber-reinforced polymer.
Journal of Composite Materials, 55(23):3161–3174, 2021. doi:
10.1177/00219983211009281.
[30] A.T. Erturk, F. Vatansever, E. Yarar, E.A. Guven, and T. Sinmazcelik. Effects of cutting temperature and process optimization in drilling of GFRP composites.
Journal of Composite Materials, 55(2):235–249, 2021. doi:
10.1177/0021998320947143.
[31] R. Pramod, S. Basavarajappa, G.B. Veeresh Kumar, and M. Chavali. Drilling induced delamination assessment of nanoparticles reinforced polymer matrix composites.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. doi:
10.1177/09544062211030967.
[32] P.K. Kharwar, R.K. Verma, N.K. Mandal, and A.K. Mondal. Swarm intelligence integrated approach for experimental investigation in milling of multiwall carbon nanotube/polymer nanocomposites.
Archive of Mechanical Engineering, 67(3):353–376, 2020. doi:
10.24425/ame.2020.131698.
[33] S. Gokulkumar, P.R. Thyla, R. ArunRamnath, and N. Karthi. Acoustical analysis and drilling process optimization of Camellia Sinensis / Ananas Comosus / GFRP / Epoxy composites by TOPSIS for indoor applications.
Journal of Natural Fibers, 18(12):2284–2301. doi:
10.1080/15440478.2020.1726240.
[34] S. Liu, T. Yang, C. Liu, Y. Jin, D. Sun, and Y. Shen. Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites.
Composite Structures, 236:111907, 2020. doi:
10.1016/j.compstruct.2020.111907.
[35] U. Bhushi, J. Suthar, and S.N. Teli. Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites.
Materials Today: Proceedings, 28(2):1106–1114, 2020. doi:
10.1016/j.matpr.2020.01.091.
[36] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks.
Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi:
10.1007/s40032-020-00563-w.
[37] M. Mudhukrishnan, P. Hariharan, and K. Palanikumar. Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills.
Measurement, 149:106973, 2020. doi:
10.1016/j.measurement.2019.106973.
[38] B.-C. Kwon, N.D.D. Mai, E.S. Cheon, and S.L. Ko. Development of a step drill for minimization of delamination and uncut in drilling carbon fiber reinforced plastics (CFRP).
The International Journal of Advanced Manufacturing Technology , 106:1291–1301, 2020. doi:
10.1007/s00170-019-04423-5.
[39] T. Panneerselvam, S. Raghuraman, T.K. Kandavel, and K. Mahalingam. Evaluation and analysis of delamination during drilling on Sisal-Glass Fibres Reinforced Polymer.
Measurement, 154:107462, 2020. doi:
10.1016/j.measurement.2019.107462.
[40] A. Landesmann, C.A. Seruti, and E. de Miranda Batista. Mechanical properties of glass fiber reinforced polymers members for structural applications.
Materials Research, 18(6):1372–1383, 2015. doi:
10.1590/1516-1439.044615.
[41] K. Askaripour and A. Zak. A survey of scrutinizing delaminated composites via various categories of sensing apparatus.
Journal of Composites Science, 3(4):95, 2019 doi:
10.3390/jcs3040095.
[42] M.R. Sanjay and B. Yogesha. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution.
Materials Today: Proceedings, 4(2):2739–2747, 2017. doi:
10.1016/j.matpr.2017.02.151.
[43] M.Y. Abdellah, M.S. Alsoufi, M.K. Hassan,H.A. Ghulman, and A.F. Mohamed. Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite.
Archive of Mechanical Engineering, 62(2):217–236, 2015. doi:
10.1515/meceng-2015-0013.
[44] K. Rodsin, Q. Hussain, P. Joyklad, A. Nawaz, and H. Fazliani. Seismic strengthening of nonductile bridge piers using low-cost glass fiber polymers. B
Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(6):1457–1470, 2020. doi:
10.24425/bpasts.2020.135383.
[45] R. Bielawski, M. Kowalik, K. Suprynowicz, R. Rządkowski,and P. Pyrzanowski. Experimental study on the riveted joints in glass fibre reinforced plastics (GFRP).
Archive of Mechanical Engineering, 64(3):301–313, 2017. doi:
10.1515/meceng-2017-0018.
[46] N. Rasana, K. Jayanarayanan, B.D.S. Deeraj, and K. Joseph. The thermal degradation and dynamic mechanical properties modeling of MWCNT/glass fiber multiscale filler reinforced polypropylene composites.
Composites Science and Technology, 169:249–259, 2019. doi:
10.1016/j.compscitech.2018.11.027.
[47] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, and W. Wolany. Comparison of the MWCNTs-Rh and MWCNTs-Re carbon-metal nanocomposites obtained in hightemperature.
Archives of Metallurgy and Materials, 60(3):2053–2060, 2015. doi:
10.1515/amm-2015-0348.
[48] Ö Demircan, K. Kadıoğlu, P. Çolak, E. Günaydın, M. Doğu, N. Topalömer, and V. Eskizeybekl. Compression after impact and Charpy impact characterizations of glass fiber/epoxy/MWCNT composites.
Fibers and Polymers, 21(8):1824–1831, 2020. doi:
10.1007/s12221-020-9921-9.
[49] P.K. Kharwar and R.K. Verma. Machining performance optimization in drilling of multiwall carbon nano tube /epoxy nanocomposites using GRA-PCA hybrid approach.
Measurement, 158:107701, 2020. doi:
10.1016/j.measurement.2020.107701.
[50] C.R.Raajeshkrishna, P. Chandramohan, and V.S. Saravanan. Thermomechanical characterization and morphological analysis of nano basalt reinforced epoxy nanocomposites.
International Journal of Polymer Analysis and Characterization, 25(4):216–226, 2020. doi:
10.1080/1023666X.2020.1781479.
[51] K.M. Tripathi, A. Sachan, M. Castro, V. Choudhary, S.K. Sonkar, and J.F. FellerF. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers.
Sustainable Materials and Technologies, 16:1–11, 2018. doi:
10.1016/j.susmat.2018.01.001.
[52] P. Rawat and K.K. Singh. A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs.
IOP Conference Series: Materials Science and Engineering, 149:012105, 2015. doi:
10.1088/1757-899X/149/1/012105.
[53] S. Yeasmin, J.H. Yeum, and S.B Yang. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril.
Carbohydrate Polymers, 240:116307, 2020. doi:
10.1016/j.carbpol.2020.116307.
[54] K. Hosseinpour and A.R. Ghasemi. Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes/fiber/polymer composite cylindrical shells.
Journal of Sandwich Structures & Materials, 23(4):1272–1291, 2021. doi:
10.1177/1099636219857200.
[55] A.R. Ghasemi, M. Mohandes, R. Dimitri, and F. Tornabene. Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell.
Composites Part B: Engineering, 167:700–716, 2019. doi:
10.1016/j.compositesb.2019.03.028.
[56] G.C. Onwubolu and S. Kumar. Response surface methodology-based approach to CNC drilling operations.
Journal of Materials Processing Technology, 171(1):41–47, 2006. doi:
10.1016/j.jmatprotec.2005.06.064.
[57] E. Kilickap, M. Huseyinoglu, and A. Yardimeden. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm.
The International Journal of Advanced Manufacturing Technology, 52:79–88, 2011. doi:
10.1007/s00170-010-2710-7.
[58] C.C. Tsao. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials.
The International Journal of Advanced Manufacturing Technology, 37:1061–1068, 2008. doi:
10.1007/s00170-007-1057-1.
[59] E. Kilickap. Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology.
The International Journal of Advanced Manufacturing Technology, 49:911–923, 2010. doi:
10.1007/s00170-009-2469-x.
[60] A. Ramaswamy and A.V. Perumal. Multi-objective optimization of drilling EDM process parameters of LM13 Al alloy–10ZrB$_2$–5TiC hybrid composite using RSM.
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42:432, 2020. doi:
10.1007/s40430-020-02518-9.
[61] K.K. Panchagnula and K. Palaniyandi. Drilling on fiber reinforced polymer/nanopolymer composite laminates: A review.
Journal of Materials Research and Technology, 7(2):180–189, 2018. doi:
10.1016/j.jmrt.2017.06.003.
[62] D. Kumar and K.K. Singh. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material.
IOP Conference Series: Materials Science and Engineering, 149:012096, 2016. doi:
10.1088/1757-899X/149/1/012096.
[63] M. Mudegowdar. Influence of cutting parameters during drilling of filled glass fabric-reinforced epoxy composites.
Science and Engineering of Composite Materials, 22(1):81–88, 2013. doi:
10.1515/secm-2013-0198.
[64] Ş Bayraktar and Y. Turgut. Determination of delamination in drilling of carbon fiber reinforced carbon matrix composites/Al 6013-T651 stacks.
Measurement, 154:107493, 2020. doi:
10.1016/j.measurement.2020.107493.
[65] K.M. John and T.S. Kumaran. Backup support technique towards damage-free drilling of composite materials: A review.
International Journal of Lightweight Materials and Manufacture, 3(4):357–364, 2020. doi:
10.1016/j.ijlmm.2020.06.001.
[66] L.M.P. Durão, J.M.R.S. Tavares, V.H.C. De Albuquerque, J.F.S. Marques, and O.N.G. Andrade. Drilling damage in composite material.
Materials, 7(5):3802–3819, 2014. doi:
10.3390/ma7053802.
[67] B.R.N. Murthy, R. Beedu, R. Bhat, N. Naik, and P. Prabakar. Delamination assessment in drilling basalt/carbon fiber reinforced epoxy composite material.
Journal of Materials Research and Technology, 9(4):7427–7433, 2020. doi:
10.1016/j.jmrt.2020.05.001.
[68] S.O. Ojo, S.O. Ismail, M. Paggi, and H.N. Dhakal. A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation.
Composites Part B: Engineering, 124:207–217, 2017. doi:
10.1016/j.compositesb.2017.05.039.
[69] D. Wang, F. Jiao, and X. Mao. Mechanics of thrust force on chisel edge in carbon fiber reinforced polymer (CFRP) drilling based on bending failure theory.
International Journal of Mechanical Sciences, 169:105336, 2020. doi:
10.1016/j.ijmecsci.2019.105336.
[70] N. Kaushik and S. Singhal. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiC$_{\rm p}$ matrix composite.
Production & Manufacturing Research , 6(1):171–189, 2018. doi:
10.1080/21693277.2018.1479666.
[71] K. Aslantas, E. Ekici, and A. Çiçek. Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis.
Measurement, 128:419–427, 2018. doi:
10.1016/j.measurement.2018.06.066.
[72] S. Ragunath, C. Velmurugan, and T. Kannan. Optimization of drilling delamination behavior of GFRP/clay nano-composites using RSM and GRA methods.
Fibers and Polymers, 18:2400–2409, 2017. doi:
10.1007/s12221-017-7420-4.
[73] P.M. Gopal and K. Soorya Prakash. Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC.
Measurement, 116:178–192, 2018. doi:
10.1016/j.measurement.2017.11.011.
[74] S.M. Shahabaz, N. Shetty, S.D. Shetty, and S.S. Sharma. Surface roughness analysis in the drilling of carbon fiber/epoxy composite laminates using hybrid Taguchi-Response experimental design.
Materials Research Express, 7(1):015322, 2020. doi:
10.1088/2053-1591/ab6198.
[75] D. Kumar, K.K. Singh, and R. Zitoune. Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills.
Advanced Manufacturing: Polymer & Composites Science, 2(2):47–56, 2016. doi:
10.1080/20550340.2016.1187434.
[76] K. Palanikumar. Experimental investigation and optimisation in drilling of GFRP composites.
Measurement, 44(10):2138–2148, 2011. doi:
10.1016/j.measurement.2011.07.023.
[77] B. Latha and V.S. Senthilkumar. Modeling and analysis of surface roughness parameters in drilling GFRP composites using fuzzy logic.
Materials and Manufacturing Processes, 25(8):817-827, 2010. doi:
10.1080/10426910903447261.
[78] F. Ficici. Evaluation of surface roughness in drilling particle-reinforced composites.
Advanced Composites Letters, 29:1–11, 2020. doi:
10.1177/2633366X20937711.