Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2015 | No 4 December

Download PDF Download RIS Download Bibtex

Abstract

An evaluation method is developed for single blow experiments with liquids on heat exchangers. The method is based on the unity Mach number dispersion model. The evaluation of one experiment yields merely one equation for the two unknowns, the number of transfer units and the dispersive Peclet number. Calculations on an example confirm that one single blow test alone cannot provide reliable values of the unknowns. A second test with a liquid of differing heat capacity is required, or a tracer experiment for the measurement of the Peclet number. A modified method is developed for gases. One experiment yields the effective number of transfer units and approximate values of the two unknowns. The numerical evaluation of calculated experiments demonstrates the applicability of the evaluation methods.
Go to article

Authors and Affiliations

Wilfried Roetzel
Chakkrit Na Ranong
Download PDF Download RIS Download Bibtex

Abstract

The experimental research of environmentally friendly refrigerant HFE-7100 condensation in pipe minichannels was conducted. During the investigations of HFE-7100 condensation in a minichannel with internal diameter 2 mm together with visualization of flow patterns was made. Visualization results were compared with existing flow structure maps. The identification of the range of flow patterns occurrence during the condensation process of low-pressure refrigerant HFE-7100 was made. The tests were performed throughout the whole range of condensation process.
Go to article

Authors and Affiliations

Tadeusz Bohdal
Małgorzata Sikora
Katarzyna Widomska
Andrii M. Radchenko
Download PDF Download RIS Download Bibtex

Abstract

In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3and thermal oil/TiO2are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20°C to 60°C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil) with manufacturer’s data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.
Go to article

Authors and Affiliations

Janusz T. Cieśliński
Katarzyna Ronewicz
Sławomir Smoleń
Download PDF Download RIS Download Bibtex

Abstract

A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.
Go to article

Authors and Affiliations

Elżbieta Fornalik-Wajs
Dariusz Mikielewicz
Jan Wajs
Michał Bajor
Download PDF Download RIS Download Bibtex

Abstract

Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Go to article

Authors and Affiliations

Leonard Vasiliev
Leonid Vasiliev
Alexander Zhuravlyov
Aleksander Shapovalov
Aleksei Rodin
Download PDF Download RIS Download Bibtex

Abstract

The paper analyzes the influence of humidity of combusted wood biomass on the flue gas losses. A mathematical relation between flue gas losses of the boiler on wood biomass humidity is presented as well as temperature of flue gas emitted from the boiler into the atmosphere. The limits of model application for the humidity of wood biomass falls into the interval 10–60% whereas the range of temperatures of flue gases emitted from the boiler to the atmosphere is 120–200°C. The influence of the humidity of wood biomass has an adverse effect on increasing the extent of the boiler flue gas losses and thus inefficiency of the heat production. The increase of the wood biomass humidity from the value of 10% to 60% with the outlet temperature of flue gases from the boiler 120°C causes an increase in flue gas loss of the boiler from the value 8.37% to 12.43%, similarly the increase of flue gas loss by 200°C from 15.19% to 22.55%, or the increase of the flue gas loss by 7.36%.
Go to article

Authors and Affiliations

Ladislav Dzurenda
Adrián Banski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of similarity theory to investigations of transient heat transfer in materials with complex structure. It describes the theoretical-experimental method for identification and design of the structure of two-component composite walls based on the research of the thermal diffusivity for the composite and its matrix separately. The thermal diffusivity was measured by means of the modified flash method. The method was tested on two samples of double-layer ‘epoxy resin – polyamide’. All the investigated samples had the same diameter of 12 mm and thickness ranging from 1.39–2.60 mm and their equivalent value of thermal diffusivity ranging from (1.21–1.98)×10-7m2/s. Testing the method and research on carbon/epoxy composites was carried out at temperatures close to room temperature.
Go to article

Authors and Affiliations

Janusz Terpiłowski
Bartosz Gawron
Grzegorz Woroniak

Instructions for authors

Submission of manuscript
Manuscripts should be electronically submitted to the Editorial System http://www.editorialsystem.com/aot. Each manuscript should be accompanied by a cover letter explaining why the manuscript is considered suitable for publication in the journal. The letter should contain:

• full title of the paper,
• full list of authors with affiliations,
• e-mail address of the authors,
• contact address and telephone numbers of the corresponding author.

The cover letter should explicitly state that the manuscript has not been previously published in any language anywhere and that it is not under simultaneous consideration or in press by another journal.

Manuscripts that have been previously rejected, or withdrawn after being returned for modification, may be resubmitted if the major criticisms have been addressed. The cover letter must state that the manuscript is a resubmission, and the former manuscript number should be provided.
All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

From January 1, 2024, the authors are requested to submit their paper using a dedicated template provided at the AOT webpage https://www.imp.gda.pl/archives-of-thermodynamics/.


Notes for Contributors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The authors are responsible to prepare papers with good English. All pages should be numbered.

Paper preparation quidelines

1. The manuscript should be written in very good English, using the two-column format provided in the template.

2. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract and Keywords.

3. More important symbols used in the paper should be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.

The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités). In the template a dedicated area is created to put the nomenclature.

4. All abbreviations should be spelled out first time they are introduced in the text. Abbreviations should also be listed in the Nomenclature.

5. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the column.

6. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

7. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

8. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

9. The figures should also be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm.

10. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

The references should be placed after the acknowledgment section. The references citation in the manuscript body should be numbered: [1], [2], etc. Please use the following style of references in bibliography APA – 7th ed:

Journal citation (APA – 7th ed):
[1] Król, J., & Ocłoń, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.
doi.org/10.1016/j.enconman.2019.05.090

[2] Zhou, Y., Bi, H., & Wang, H. (2023). Influence of the primary components of the high-speed train on fire heat release rate. Archives of Thermodynamics, 44(1), 37–61.
doi.org/10.24425/ather.2023.145876

When citing scientific papers, it is needed to provide a DOI identifier if available.
Example of citation:
• Król and Ocłoń [1] studied a hybrid CHP sensitivity on fuel and CO2 emission allowances price change.
• Zhou et al. [2] studied the influence of the primary components of the high speed train on fire heat release rate.

Book citation (APA – 7th ed):
[3] Ocłoń, P. (2021). Renewable energy utilization using underground energy systems (1st ed.). Springer Nature.
Example of citation:
• Ocłoń et al. [3] presented renewable energy systems for heating cooling and electrical energy production in buildings.

Book chapter citation (APA – 7th ed):
[4] Ciałkowski, M., & Frąckowiak, A. (2014). Boundary element method in inverse heat conduction problem. In Encyclopedia of Thermal Stresses (pp. 424–433). Springer Netherlands.
Example of citation:
• Ciałkowski and Frąckowiak [4] presented a Boundary element method application for solving inverse heat conduction problems.

Conference proceedings (APA – 7th ed):
[5] Pourghasemi, B., & Fathi, N. (2023). Validation and verification analyses of turbulent forced convection of Na and NaK in miniature heat sinks. ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium, 17-19 May, Baltimore, USA.
Example of citation:
• Pourghasemi and Fathi [5] validated and verified turbulent forced convection of Na and NaK in miniature heat sinks.
For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference. Authors are responsible for ensuring that the information in each reference is complete and accurate, including the DOI number.

11. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication. When the Editors or Reviewers assess that the writing English of the manuscript is poor, the authors are obliged to correct it, and provide a Certificate of English Editing as attachment in Editorial System.

Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.

Transfer of Copyright Agreement

All papers are published under lincense CC BY 4.0. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors.

This page uses 'cookies'. Learn more