Liquid AI -Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved proper ties. For many years, sodium additions to hypoeutectic and eutectic AI -Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic s tructure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI -Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non -fading) refining ability. In this paper, the authors summarize work on antimony treatment of Al -Si based alloys.
The paper presents results of calorimetric studies of foundry nickel superalloys: IN100, IN713C, Mar - M247 and ŻS6 U. Particular attention was paid to determination of phase transiti ons temperatures during heating and cooling. The samples were heated to a temperature of 1500°C with a rate of 10°C ⋅ min – 1 and then held at this temperature for 5 min. After a complete melting, the samples were cooled with the same rat e. Argon with a purity of 99.99% constituted the protective atmosphere. The sample was placed in an alundum crucible with a capacity of 0.45 cm 3 . Temperature and heat calibration was carried out based on the mel ting point of high- purity Ni. The tests were carried out by the differential scanning calorimetry (DSC) using a Multi HTC high -temperature calorimeter from Setaram. Based on the DSC curves, the following temperatures were determined: solidus and liquidus, dissolution and precipitation of the γ ’ phase, MC carbides and melting of the γ ’ /γ eutectic. In the temperature range of 100 -1100°C, specific heat capacity of the investigated superalloys was determined. It was found that the IN713C and IN100 alloys exhibit a higher specific heat while compared to the Mar - M247 and ŻS6 U alloys.
The paper deals with susceptibility of nodular cast iron with ferritic -pearlitic matrix on cavitation erosion . Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstr ucture of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.
The modified surface layers of Mg enriched with Al and Si were fabricated by thermochemical treatment. The substrate material in contact with an Al + 20 wt.% Si powder mixture was heated to 445ºC for 40 or 60 min. The microstructure of the layers was examined by OM and SEM. The chemical composition of the layer and the distribution of elements were determined by energy dispersive X-ray spectroscopy (EDS). The experimental results show that the thickness of the layer is dependent on the heating time. A much thicker layer (1 mm) was obtained when the heating time was 60 min than when it was 40 min (600 μm). Both layers had a non-homogeneous structure. In the area closest to the Mg substrate, a thin zone of a solid solution of Al in Mg was detected. It was followed by a eutectic with Mg17Al12and a solid solution of Al in Mg. The next zone was a eutectic with agglomerates of Mg2Si phase particles; this three-phase structure was the thickest. Finally, the area closest to the surface was characterized by dendrites of the Mg17Al12phase. The microhardness of the modified layer increased to 121-236 HV as compared with 33-35 HV reported for the Mg substrate.
Cast irons are good examples of materials which are more sensitive to chemical composition and production conditions. In this research to improve casting quality, solidification and nucleation process in grey cast iron was investigate. In particular, attempts have been made to rationalize variation in eutectic cells with nucleation sites and eutectic solidification undercooling. Four castings with different diameter and similar chemical composition and pouring temperature and different inoculant percentage was casted. The cooling curve and maximum and minimum undercooling for each castings was measured. Also optical metallography and image analyzer has been used to determine the average eutectic cells diameter, and linear and surface densities, and volume density was calculated. The results of this research show a competitive behavior between nucleation sites and eutectic undercooling. Higher nucleation sites and higher eutectic undercooling cause higher eutectic cell density. But increasing nucleation sites by introducing inoculants to molten metal, is accompanied with reduction in eutectic undercooling. It means that inoculation and undercooling have opposite effect on each other. So, to achieve maximum cell density, it is necessary to create an optimization between these parameters.
The paper presents an approach of numerical modelling of alloy solidification in permanent mold and transient heat transport between the casting and the mold in two-dimensional space. The gap of time-dependent width called "air gap", filled with heat conducting gaseous medium is included in the model. The coefficient of thermal conductivity of the gas filling the space between the casting and the mold is small enough to introduce significant thermal resistance into the heat transport process. The mathematical model of heat transport is based on the partial differential equation of heat conduction written independently for the solidifying region and the mold. Appropriate solidification model based on the latent heat of solidification is also included in the mathematical description. These equations are supplemented by appropriate initial and boundary conditions. The formation process of air gap depends on the thermal deformations of the mold and the casting. The numerical model is based on the finite element method (FEM) with independent spatial discretization of interacting regions. It results in multi-mesh problem because the considered regions are disconnected.
The paper presents an application of advanced data-driven (soft) models in finding the most probable particular causes of missed ductile iron melts. The proposed methodology was tested using real foundry data set containing 1020 records with contents of 9 chemical elements in the iron as the process input variables and the ductile iron grade as the output. This dependent variable was of discrete (nominal) type with four possible values: ‘400/18’, ‘500/07’, ‘500/07 special’ and ‘non-classified’, i.e. the missed melt. Several types of classification models were built and tested: MLP-type Artificial Neural Network, Support Vector Machine and two versions of Classification Trees. The best accuracy of predictions was achieved by one of the Classification Tree model, which was then used in the simulations leading to conversion of the missed melts to the expected grades. Two strategies of changing the input values (chemical composition) were tried: content of a single element at a time and simultaneous changes of a selected pair of elements. It was found that in the vast majority of the missed melts the changes of single elements concentrations have led to the change from the non-classified iron to its expected grade. In the case of the three remaining melts the simultaneous changes of pairs of the elements’ concentrations appeared to be successful and that those cases were in agreement with foundry staff expertise. It is concluded that utilizing an advanced data-driven process model can significantly facilitate diagnosis of defective products and out-of-control foundry processes.
The present investigation focuses on the study of the influence of titanium inoculation on tribological properties of High Chromium Cast Iron. Studies of tribological properties of High Chromium Cast Iron, in particularly the wear resistance are important because of the special application of this material. High Chromium Cast Iron is widely used for parts that require high wear resistance for example the slurry pumps, brick dies, several pieces of mine drilling equipment, rock machining equipment, and similar ones. Presented research described the effects of various amounts of Fe-Ti as an inoculant for wear resistance. The results of wear resistance were collated with microstructural analysis. The melts were conducted in industrial conditions. The inoculation was carried out on the stream of liquid metal. The following amount of inoculants have been used; 0.17% Fe-Ti, 0.33% Fe-Ti and 0.66% Fe-Ti. The tests were performed on the machine type MAN. The assessment of wear resistance was made on the basis of the weight loss. The experimental results indicate that inoculation improve the wear resistance. In every sample after inoculation the wear resistance was at least 20% higher than the reference sample. The best result, thus the smallest wear loss was achieved for inoculation by 0.66% Fe-Ti. There is the correlation between the changing in microstructure and wear resistance. With greater amount of titanium the microstructure is finer. More fine carbides do not crumbling so quickly from the matrix, improving the wear resistance.
The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.
A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass) are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.
The aim of the current study was to examine the structure of an alloy treated at various temperatures up to 2,000–2,100 °C. Among research techniques for studying alloy structure there were the electron and optical microstructure, X-ray structure, and spectral analysis, and for studying the developed furnace geometric parameters the authors employed mathematical modeling method. The research was performed using aluminum smelting gas-fired furnaces and electric arc furnaces. The objects of the study were aluminum alloys of the brand AK7p and AK6, as well as hydrogen and aluminum oxide in the melt. For determining the hydrogen content in the aluminum alloy, the vacuum extraction method was selected. Authors have established that treatment of molten aluminum alloy in contact with carbon melt at high temperatures of 2,000–2,100 °C has resulted in facilitating reduction of hydrogen and aluminum oxide content in the melt by 40-43% and 50-58%, respectively, which is important because hydrogen and aluminum oxide adversely affect the structure and properties of the alloy. Such treatment contributes to the formation of the extremely fine-grained microstructure of aluminum alloy.
In this article, there were presented results of research on influence of reclamation process on the ecological quality of reclaim sand with furan resin used in nonferrous foundry. The quality of reclaimed sand is mainly define by two group of chemical substances from elution of reclaimed sand: Dissolves Organic Carbon (DOC) and Total Dissolves Solids (TDS). Reclaimed sand used in test was prepared in experimental thermal reclaimer and mechanical vibration reclaimer REGMAS installed in Faculty of Foundry Engineering at University of Science and Technology in Krakow. The reference point is molding sand shaking out and crumble in jaw crusher. Test of elution was made in acreditation laboratory in Center For Research and Environmental Control in Katowice up to the standard with Dissolves Organic Carbon (DOC) - PN-EN 1484:1999; Total Dissolves Solids (TDS) - PN-EN 15216:2010. The standard for elution test is PN-EN 12457- 4:2006. Except that we were made loss of ignition test, to check how many resin was rest on sand grains.
The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.
The paper presents a novel Iterated Local Search (ILS) algorithm to solve multi-item multi-family capacitated lot-sizing problem with setup costs independent of the family sequence. The model has a direct application to real production planning in foundry industry, where the goal is to create the batches of manufactured castings and the sequence of the melted metal loads to prevent delays in delivery of goods to clients. We extended existing models by introducing minimal utilization of furnace capacity during preparing melted alloy. We developed simple and fast ILS algorithm with problem-specific operators that are responsible for the local search procedure. The computational experiments on ten instances of the problem showed that the presence of minimum furnace utilization constraint has great impact on economic and technological conditions of castings production. For all test instances the proposed heuristic is able to provide the results that are comparable to state-of-the art commercial solver.
A mathematical model of austenite - bainite transformation in austempered ductile cast iron has been presented. The model is based on a model developed by Bhadeshia [1, 2] for modelling the bainitic transformation in high-silicon steels with inhibited carbide precipitation. A computer program has been developed that calculates the incubation time, the transformation time at a preset temperature, the TTT diagram and carbon content in unreacted austenite as a function of temperature. Additionally, the program has been provided with a module calculating the free energy of austenite and ferrite as well as the maximum driving force of transformation. Model validation was based on the experimental research and literature data. Experimental studies included the determination of austenite grain size, plotting the TTT diagram and analysis of the effect of heat treatment parameters on the microstructure of ductile iron. The obtained results show a relatively good compatibility between the theoretical calculations and experimental studies. Using the developed program it was possible to examine the effect of austenite grain size on the rate of transformation.
Mg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320 ºC) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200 ºC) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.
In this study, low-carbon cast steel was reinforced with TiC by SHS-B method, also known as combustion synthesis during casting method. The composite zone was then subjected to surface remelting by Gas Tungsten Arc Welding (GTAW) method. The remelting operation was realized manually, at 150 A current magnitude. Microstructure, phase composition and hardness of remelted zone were investigated. XRD results reveal that the phases of the composite zone in initial state consist of TiC and Feα. Surface remelting resulted in formation of thick layers containing TiC carbides, Feα and Feγ. Microstructural examination has shown strong refinement of titanium carbides in remelted zone and complete dissolution of primary titanium carbides synthetized during casting. The average diameter of carbides was below 2 μm. The structural changes are induced by fast cooling which affects crystallization rate. The hardness (HV30) of the remelted layer was in the range between 250 HV and 425 HV, and was lower than hardness in initial state.
Mg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320 o C) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200 o C) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.
In this study, rubber seed/shea butter oil was used to formulate core oil. The formulated core oil was characterised. D-optimal mixture design was used for multi response optimisation of the functional properties of rubber seed-shea butter coil oil. Desirable values for some responses might be obtained from a factor combination while for others responses not so desirable values. Through multiple response optimisations, a factor setting that gives the desirable values for all responses was obtained. The selected optimum mixture setting for the formulated core oil is 65.937% Rubber seed and 34.063% Shea butter oil at desirability of 0.924. Under the optimum condition the functional properties of the core oil was found to be 39.57KN/M2, 626.85KN/M2, 36.63KN/M2, 593.906KN/M2, 412.605 and 167.309s for Green Compressive Strength, Dry Compressive Strength, Green Tensile Strength, Dry Tensile Strength, Permeability and Collapsibility respectively. The optimum conditions were validated with less than 0.2% error. The functional properties of the formulated core oil was compared to the functional properties of linseed core oil. It was found that rubber seed-shea butter core oil can be used for producing cores suitable for Aluminium casting.
In this work, T-shaped mould design was used to generate hot spot and the effect of Sr and B on the hot tearing susceptibility of A356 was investigated. The die temperature was kept at 250o C and the pouring was carried out at 740o C. The amonut of Sr and B additions were 30 and 10 ppm, respectively. One of the most important defects that may exist in cast aluminium is the presence of bifilms. Bifilms can form by the surface turbulence of liquid metal. During such an action, two unbonded surfaces of oxides fold over each other which act as a crack. Therefore, this defect cause many problems in the cast part. In this work, it was found that bifilms have significant effect over the hot tearing of A356 alloy. When the alloy solidifies directionally, the structure consists of elongated dendritic structure. In the absence of equiaxed dendrites, the growing tips of the dendrites pushed the bifilms to open up and unravel. Thus, leading to enlarged surface of oxide to become more harmful. In this case, it was found that these bifilms initiate hot tearing.
The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).
Nickel-based alloys are widely used in industries such as the aircraft industry, chemicals, power generation, and others. Their stable mechanical properties in combination with high resistance to aggressive environments at high temperatures make these materials suitable for the production of components of devices and machines intended for operation in extremely difficult conditions, e.g. in aircraft engines. This paper presents the results of thermal and mechanical tests performed on precision castings made of the Inconel 713C alloy and intended for use in the production of low pressure turbine blades. The tests enabled the determination of the nil strength temperature (NST), the nil ductility temperature (NDT), and the ductility recovery temperature (DRT) of the material tested. Based on the values obtained, the high temperature brittleness range (HTBR) and the hot cracking resistance index were determined. Metallographic examinations were conducted in order to describe the cracking mechanisms. It was found that the main cracking mechanism was the partial melting of grains and subsequently the rupture of a thin liquid film along crystal boundaries as a result of deformation during crystallisation. Another cracking mechanism identified was the DDC (Ductility Dip Cracking) mechanism. The results obtained provide a basis for improving precision casting processes for aircraft components and constitute guidelines for designers, engineers, and casting technologists.
The study discusses the issues connected with the production of thin-walled ceramic slurry in the replicast cs technology. In the ceramic mould production process, a special role is played by the liquid ceramic slurry used to produce the first layer of the mould. The study examines selected technological properties of liquid ceramic slurries used to produce moulds in the replicas cs technology. The ceramic slurries for the tests were prepared based on the binders Ludox Px30 and Sizol 030, enriched with Refracourse flour. The wettability of the pattern's surface by the liquid ceramic slurry and the dependence of the apparent viscosity on the ceramic flour content in the mixture were determined. The wettability of the pattern surface by the liquid ceramic slurry was determined based on the measurement of the wetting angle. The angle was determined by means of an analysis of the computer image obtained with the use of a CDC camera.
Emergence of new designs for internal combustion engines resulted in a necessity to search for new materials which will rise to excessive technological requirements under operating conditions of modern internal combustion engines of up to 150 kW. Focusing only on material properties, theoretically existing alloys should meet presents requirements. More importantly, existing materials are well fitted to the entire crank-piston system. Thus, there is a need for a more thorough examination of these materials. The paper presents studies on determination of coefficient of friction μ and wear for the A390.0 alloy modified with AlTi5B master alloy combined with EN GJL-350 cast iron. The characteristics of a T-11 tribological tester (pin on disc) used for the tests, as well as the methodology of the tribological tests, were described. Also, the analysis of the surface distribution of elements for the pin and the disc was presented. The studies were realized in order to find whether the analyzed alloy meets the excessive requirements for the materials intended for pistons of modern internal combustion engines. The results show that the A390.0 alloy can only be applied to a load of 1.4 MPa. Above this value was observed destructive wear, which results in the inability to use it in modern internal combustion engines.
Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κIIaffecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σtand shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear). Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing's construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.
The paper attempts to analyze distortions of cast iron and cast steel rings, after heat treatment cycles. The factors influencing distortion are: chemical composition of material, sample geometry, manufacturing process, hardenability, temperature and heat treatment method. Standard distortion tests are performed on C-ring samples. We selected a ring-model, which approximate the actual part, so that findings apply to gear rings. Because distortion depends on so many variables, this study followed strictly defined procedures. The research was started by specifying the appropriate geometry of the samples. Then, the heat treatment was conducted and samples were measured again. The obtained results allow to determine the value of the resulting distortion and their admissibility. The research will be used to evaluate the possibility of using the material to produce parts of equipment operated under extreme load conditions.
Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.
The paper presents the results of thermoanalytical studies by TG/DTG/DTA, FTIR and GC/MS for the oil sand used in art and precision foundry. On the basis of course of DTG and DTA curves the characteristic temperature points for thermal effects accompanying the thermal decomposition reactions were determined. This results were linked with structural changes occurred in sample. It has been shown that the highest weight loss of the sample at temperatures of about 320°C is associated with destruction of C-H bonds (FTIR). In addition, a large volume of gases and high amounts of compounds from the BTEX group are generated when liquid metal interacts with oil sand. The results show, that compared to other molding sands used in foundry, this material is characterized by the highest gaseous emissions and the highest harmfulness, because benzene emissions per kilogram of oil sand are more than 7 times higher than molding sand with furan and phenolic binders and green sand with bentonite and lustrous carbon carrier.
Grain refining and modification are common foundry practice for improving properties of cast Al-Si alloys. In general, these types of treatments provide better fluidity, decreased porosity, higher yield strength and ductility. However, in practice, there are still some discrepancies on the reproducibility of the results from grain refining and effect of the refiner’s additions. Several factors include the fading effect of grain refinement and modifiers, inhomogeneous dendritic structure and non-uniform eutectic modification. In this study, standard ALCAN test was used by considering Taguchi’s experimental design techniques to evaluate grain refinement and modification efficiency. The effects of five casting parameters on the grain size have been investigated for A357 casting alloy. The results showed that the addition of the grain refiner was the most effective factor on the grain size. It was found that holding time, casting temperature, alloy type and modification with Sr were less effective over grain refinement.
This paper presents the idea of increasing the effectiveness of slag decopperisation in an electric furnace in the "Głogów II" Copper Smelter by replacing the currently added CaCO3with a less energy-intensive technological additive. As a result of this conversion, one may expect improved parameters of the process, including process time or power consumption per cycle. The incentives to optimize the process are the benefits of increasing copper production in the company and the growing global demand for this metal. The paper also describes other factors that may have a significant impact on the optimization of the copper production process. Based on the literature analysis, a solution has been developed that improves the copper production process. The benefits of using a new technology additive primarily include increased share of copper in the alloy, reduced production costs, reduced amount of power consumed per cycle and reduced time it takes to melt. At the conclusion of the paper, the issues raised are highlighted, stressing that mastering the slag slurry process in electric furnaces requires continuous improvement.
The results of research on the effect of the type of cooling agent used during heat treatment and thermal-chemical treatment on the formation of temperature gradient and stress-deformation distribution in cast pallets, which are part of furnace accessories used in this treatment, are disclosed. During operation, pallets are exposed to the effect of the same conditions as the charge they are carrying. Cyclic thermal loads are the main cause of excessive deformations or cracks, which after some time of the cast pallet operation result in its withdrawal due to damage. One of the major causes of this damage are stresses formed under the effect of temperature gradient in the unevenly cooled pallet construction. Studies focused on the analysis of heat flow in a charge-loaded pallet, cooled by various cooling agents characterized by different heat transfer coefficients and temperature. Based on the obtained temperature distribution, the stress distribution and the resulting deformation were examined. The results enabled drawing relevant conclusions about the effect of cooling conditions on stresses formed in the direction of the largest temperature gradient.
This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εrfor a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.
This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market) and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ), its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm). The technological parameters that were varied during the experiments included the type of assist gases (N2and O2), to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.
The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.
The ecological meanings clearly indicates the need of reducing of the concentration of the CO2in the atmosphere, which can be accomplished through the lowering of the fuel consumption. This fact implies the research for the new construction solutions regarding the reduction of the weight of vehicles. The reduced weight of the vehicle is also important in the case of application of the alternative propulsion, to extend the lifetime of the batteries with the reduction of recharge cycles. The use of cast alloy AlZnMgCu compliant of plastic forming class 7xxx alloy, are intended to significantly reduce the weight of the structures, while ensuring high strength properties. The wide range of the solidification temperature, which is more than 150°C, characterizes this alloy with a high tendency to create the micro and macro porosity. The study presents the relationship between the cooling rate and the area of occurrence and percentage of microporosity. Then the results were linked to the local tensile strength predicted in the simulation analysis. The evaluation of the microporosity was performed on the basis of the CT (computed tomography) and the analysis of the alloy microstructure. The microstructure analysis was carried out on test specimen obtained from the varying wall thickness of the experimental casting. The evaluation of the mechanical properties was prepared on the basis of the static tensile test and the modified low cycle fatigue test (MLCF).
In this paper, crushability of foundry sand particles was studied. Three kinds of in-service silica sands in foundry enterprises selected as the study object, and foundry sand particles were subjected to mechanical load and thermal load during service were analyzed. A set of methods for simulating mechanical load and thermal load by milling and thermal-cold cycling were designed and researched, which were used to characterize the crushability for silica sand particles, the microstructure was observed by SEM. According to the user’s experience in actual application, the crushability of Sand C was the best and then Sand B, the last Sand A. The results indicated that mechanical load, thermal load and thermal-mechanical load can all be used to characterize the crushability of foundry sand particles. Microscopic appearances can qualitatively characterize the crushability of foundry sand particles to a certain extent, combining with the additions and cracks which are observed on the surface.
Forecasting and analysis SWOT are helping tools in the business activity, because under conditions of dynamic changes in both closer and more distant surroundings, reliable, forward-looking information and trends analysis are playing a decisive role. At present, the ability to use available data in forecasting and other analyzes according with changes in business environment are the key managerial skills required, since both forecasting and SWOT analysis are a integral part of the management process, and the appropriate level of forecasting knowledge is increasingly appreciated. Examples of practical use of some forecasting methods in optimization of the procurement, production and distribution processes in foundries are given. The possibilities of using conventional quantitative forecasting methods based on econometric and adaptive models applying the creep trend and harmonic weights are presented. The econometric models were additionally supplemented with the presentation of error estimation methodology, quality assessment and statistical verification of the forecast. The possibility of using qualitative forecasts based on SWOT analysis was also mentioned.
The paper presents validation tests for method which is used for the evaluation of the statistical distribution parameters for 3D particles’ diameters. The tested method, as source data, uses chord sets which are registered from a random cutting plane placed inside a sample space. In the sample space, there were individually generated three sets containing 3D virtual spheres. Each set had different Cumulative Distribution Function (CDF3) of the sphere diameters, namely: constant radius, normal distribution and bimodal distribution as a superposition of two normal distributions. It has been shown that having only a chord set it is possible, by using the tested method, to calculate the mean value of the outer sphere areas. For the sets of data, a chord method generates quite large errors for around 10% of the smallest nodules in the analysed population. With the increase of the nodule radii, the estimation errors decrease. The tested method may be applied to foundry issues e.g. for the estimation of gas pore sizes in castings or for the estimation of nodule graphite sizes in ductile cast iron.
Among the copper based alloys, Cu-Al-X bronzes are commonly used as mold materials due to their superior physical and chemical properties. Mold materials suffer from both wear and corrosion, thus, it is necessary to know which one of the competitive phenomenon is dominant during the service conditions. In this study, tribo-corrosion behavior of CuAl10Ni5Fe4 and CuAl14Fe4Mn2Co alloys were studied and electrochemical measurements were carried out using three electrode system in 3.5 % NaCl solution in order to evaluate their corrosion resistance. In tribo-corrosion tests, alloys were tested against zirconia ball in 3.5 % NaCl solution, under 10N load with 0.04 m/s sliding speed during 300 and 600 m. The results indicate that (i) CuAl10Ni5Fe4 alloy is more resistant to NaCl solution compared to CuAl14Fe4Mn2Co alloy that has major galvanic cells within its matrix, (ii) although CuAl10Ni5Fe4 alloy has lower coefficient of friction value, it suffers from wear under dry sliding conditions, (iii) as the sliding distance increases, corrosion products on CuAl14Fe4Mn2Co surface increase at a higher rate compared to CuAl10Ni5Fe4 leading to a decrease in volume loss due to the lubricant effect of copper oxides.
The article presents an example of finishing treatment for aluminum alloys with the use of vibration machining, with loose abrasive media in a closed tumbler. For the analysis of selected properties of the surface layer prepared flat samples of aluminum alloy PA6/2017 in the state after recrystallization. The samples in the first stage were subjected to a treatment of deburring using ceramic media. In a second step polishing process performed with a strengthening metal media. In addition, for comparative purposes was considered. only the case of metal polishing. The prepared samples were subjected to hardness tests and a tangential tensile test. As a result of finishing with vibratory machining, it was possible to remove burrs, flash, rounding sharp edges, smoothing and lightening the surface of objects made. The basic parameters of the surface geometry were obtained using the Talysurf CCI Lite - Taylor Hobson optical profiler. As a result of the tests it can be stated that the greatest reduction of surface roughness and mass loss occurs in the first minutes of the process. Mechanical tests have shown that the most advantageous high values of tensile strength and hardness are obtained with two-stage vibration treatment, - combination of deburring and polishing. Moreover the use of metal media resulted in the strengthening of the surface by pressure deburring with metal media.
Submission
To submit the article, please use the Editorial System provided here:
https://www.editorialsystem.com/afe
Papers submitted in any other way will not be accepted.
The Journal does not have submission charges.
The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.
Bank account details:
Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748
Instructions for the preparation of an Archives of Foundry Engineering Paper