[1] Z. He and L. Zhao. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.
The Scientific World Journal, 2014: 280180, 2014. doi:
10.1155/2014/280180.
[2] P. Jimenez, P. Lichota, D. Agudelo, and K. Rogowski. Experimental validation of total energy control system for UAVs.
Energies, 13(1):14, 2020. doi:
10.3390/en13010014.
[3] C. Aoun, N. Daher, and E. Shammas. An energy optimal path-planning scheme for quadcopters in forests.
2019 IEEE 58th Conference on Decision and Control (CDC), pages 8323–8328, Nice, France, 11–13 December 2019. doi:
10.1109/CDC40024.2019.9029345.
[4] T.A. Rodrigues, J. Patrikar, A. Choudhry, J. Feldgoise, V. Arcot, A. Gahlaut, S. Lau, B. Moon, B. Wagner, H. S. Matthews, S. Scherer, and C. Samaras. In-flight positional and energy use data set of a DJI Matrice 100 quadcopter for small package delivery.
Scientific Data, 8:155, 2021. doi:
10.1038/s41597-021-00930-x.
[5] F. Yacef, N. Rizoug, and L. Degaa. Energy-efficiency path planning for quadrotor UAV under wind conditions.
2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1133–1138, Prague, Czech Republic, 29 June–2 July 2020. doi:
10.1109/CoDIT49905.2020.9263968.
[6] F. Yacef, O. Bouhali, M. Hamerlain, and N. Rizoug. Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion battery.
Journal of Intelligent and Robotic Systems, 84(1–4):179–197, 2016. doi:
10.1007/s10846-016-0345-0.
[7] F. Yacef, N. Rizoug, O. Bouhali, and M. Hamerlain. Optimization of energy consumption for quadrotor UAV.
International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017, Toulouse, France, 18-21 September 2017.
[8] F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain. Trajectory optimisation for a quadrotor helicopter considering energy consumption.
2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1030–1035, Barcelona, Spain, 5–7 April 2017. doi:
10.1109/CoDIT.2017.8102734.
[9] G. Jia, S. Gong, R. Guo, and M. Li. Energy consumption model of BLDC quadrotor UAVs for mobile communication trajectory planning.
TechRxiv. doi:
10.36227/techrxiv.19181228.v1.
[10] F. Morbidi, R. Cano, and D. Lara. Minimum-energy path generation for a quadrotor UAV.
2016 Ieee International Conference on Robotics and Automation (ICRA), pages 1492–1498, Stockholm, Sweden, 16–21 May 2016. doi:
10.1109/ICRA.2016.7487285.
[11] S. Jee and H. Cho. Comparing energy consumption following flight pattern for quadrotor.
Journal of IKEEE, 22(3):747–753, 2018. doi:
10.7471/ikeee.2018.22.3.747.
[12] C.W. Chan and T.Y. Kam. A procedure for power consumption estimation of multi-rotor unmanned aerial vehicle.
Journal of Physics: Conference Series, 1509:012015, 2020. doi:
10.1088/1742-6596/1509/1/012015.
[13] Y. Wang, Y. Wang, and B. Ren. Energy saving quadrotor control for field inspection.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(3):1768–1777, 2020. doi:
10.1109/TSMC.2020.3037071.
[14] H. Lu, K. Chen, X.B. Zhai, B. Chen, and Y. Zhao. Tradeoff between duration and energy optimization for speed control of quadrotor unmanned aerial vehicle.
2018 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN), pages 1–5, Shenzhen, China, 5–7 December 2018. doi:
10.1109/ISPCE-CN.2018.8805801.
[15] N. Bezzo, K. Mohta, C. Nowzari, I. Lee, V. Kumar, and G. Pappas. Online planning for energy-efficient and disturbance-aware UAV operations.
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5027–5033, Daejeon, Korea, 9–14 October 2016. doi:
10.1109/IROS.2016.7759738.
[16] V. Agarwal and R.R. Tewari. Improving energy efficiency in UAV attitude control using deep reinforcement learning.
Journal of Scientific Research, 65(3):209–219, 2021.
[17] A. Korneyev, M. Gorobetz, I. Alps, and L. Ribickis. Adaptive traction drive control algorithm for electrical energy consumption minimisation of autonomous unmanned aerial vehicle.
Electrical, Control and Communication Engineering, 15(2):62–70, 2019. doi:
10.2478/ecce-2019-0009.
[18] J.F. Roberts, J.-C. Zufferey, and D. Floreano. Energy management for indoor hovering robots.
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1242–1247, Nice, France, 22–26 September 2008. doi:
10.1109/IROS.2008.4650856.
[19] A.S. Prasetia, R.-J. Wai, Y.-L. Wen, and Y.-K. Wang. Mission-based energy consumption prediction of multirotor UAV.
IEEE Access, 7:33055–33063, 2019. doi:
10.1109/ACCESS.2019.2903644.
[20] X. Wu, J. Zeng, A. Tagliabue, and M. W. Mueller. Model-free online motion adaptation for energy-efficient flight of multicopters.
Arxiv. doi:
10.48550/arXiv.2108.03807.
[21] C. Di Franco and G. Buttazzo. Energy-aware coverage path planning of UAVs.
2015 IEEE International Conference on Autonomous Robot Systems and Competitions, pages 111–117, Vila Real, Portugal, 08–10 April 2015. doi:
10.1109/ICARSC.2015.17.
[22] T. Dietrich, S. Krug, and A. Zimmermann. An empirical study on generic multicopter energy consumption profiles.
2017 Annual IEEE International Systems Conference (SysCon), pages 1–6, Montreal, QC, Canada, 24–27 April 2017. doi:
10.1109/SYSCON.2017.7934762.
[23] H.V. Abeywickrama, B.A. Jayawickrama, Y. He, and E. Dutkiewicz. Empirical power consumption model for UAVs.
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1-5, Chicago, IL, USA, 27–30 August 2018. doi:
10.1109/VTCFall.2018.8690666.
[24] R. Shivgan and Z. Dong. Energy-efficient drone coverage path planning using genetic algorithm.
2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pages 1–6, Newark, NJ, USA, 11–14 May 2020. doi:
10.1109/HPSR48589.2020.9098989.
[25] C. Di Franco and G. Buttazzo. Coverage path planning for UAVs photogrammetry with energy and resolution constraints.
Journal of Intelligent & Robotic Systems, 83:445–462, 2016. doi:
10.1007/s10846-016-0348-x.
[26] N. Gao, Y. Zeng, J. Wang, D. Wu, C. Zhang, Q. Song, J. Qian and S. Jin. Energy model for UAV communications: Experimental validation and model generalization.
China Communications, 18(7):253–264, 2021. doi:
10.23919/JCC.2021.07.020.
[27] N. Kreciglowa, K. Karydis, and V. Kumar, Energy efficiency of trajectory generation methods for stop-and-go aerial robot navigation.
2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 656–662, Miami, USA, 13–16 June 2017. doi:
10.1109/ICUAS.2017.7991496.
[28] P. Pradeep, S.G. Park, and P. Wei. Trajectory optimization of multirotor agricultural.
2018 IEEE Aerospace Conference, pages 1–7, Big Sky, USA, 3–10 March 2018. doi:
10.1109/AERO.2018.8396617.
[29] M-h. Hwang, H-R. Cha and S.Y. Jung. Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles.
Energies, 11(9):2221, 2018. doi:
10.3390/en11092221.
[30] A. Abdilla, A. Richards, and S. Burrow. Power and endurance modelling of battery-powered rotorcraft.
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 675–680, Hamburg, Germany, 28 September–2 October 2015. doi:
10.1109/IROS.2015.7353445.
[31] J. Apeland, D. Pavlou, and T. Hemmingsen. Suitability Analysis of implementing a fuel cell on a multirotor drone.
Journal of Aerospace Technology and Management, 12:e3220, 2020. doi:
10.5028/jatm.v12.1172.
[32] Z. Liu, R. Sengupta and A. Kurzhanskiy. A power consumption model for multi-rotor small unmanned aircraft systems.
2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 310–315, Miami, FL, USA, 13–16 June 2017. doi:
10.1109/ICUAS.2017.7991310.
[33] L. Zhang, A. Celik, S. Dang, and B. Shihada. Energy-efficient trajectory optimization for UAV-assisted IoT networks.
IEEE Transactions on Mobile Computing, 21(12):4323–4337, 2022. doi:
10.1109/TMC.2021.3075083.
[34] Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, and M. Poncino. A case for a battery-aware model of drone energy consumption.
2018 IEEE International Telecommunications Energy Conference (INTELEC), pages 1–8, Turino, Italy, 7–11 October 2018. doi:
10.1109/INTLEC.2018.8612333.
[35] [Online]. https://www.dji.com/pl/mavic-2/info, [Accessed on: 13 July 2021].
[36] National Aeronautics and Space Administration, U.S. Standard Atmosphere, 1976, Washington, D.C., 1976.
[37] P.H. Zipfel.
Modeling and Simulation of Aerospace Vehicle Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 2000.
[38] D. Allerton.
Principles of Flight Simulation. John Wiley and Sons, 2009.
[39] B.L. Stevens, F.L. Lewis, and E.N. Johnson.
Aircraft Control and Simulation. Dynamics, Controls Design, and Autonomous Systems. John Wiley and Sons, 2015.
[40] M. Dreier.
Introduction to Helicopter and Tiltrotor Simulation. American Institute of Aeronautics and Astronautics. Reston, USA, 2007.
[41] P. Lichota, F. Dul, and A. Karbowski. System identification and LQR controller design with incomplete state observation for aircraft trajectory tracking.
Energies, 13(20):5354, 2020. doi:
10.3390/en13205354.
[42] M. Abzug.
Computational Flight Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 1998.
[43] S.K. Phang, C. Cai, B.M. Chen, and T.H. Lee. Design and Mathematical Modeling of a 4-Standard-Propeller (4SP) Quadrotor. In:
Proceedings of the 10th World Congress on Intelligent Control and Automation, pages 3270–3275, Beijing, China, 6–8 July 2012. doi:
10.1109/WCICA.2012.6358437.
[44] J. Sanketi, R. Kasliwal, S. Raghavan, and S. Awan. Modelling and simulation of a multi-quadcopter concept.
International Journal of Engineering Research & Technology (IJERT), 5(10):566–571, 2016.
[45] N.M. Salma and K. Osman. Modelling and PID control system integration for quadcopter DJIF450 attitude stabilization.
Indonesian Journal of Electrical Engineering and Computer Science, 19(3):1235–1244. doi:
10.11591/ijeecs.v19.i3.pp1235-1244.
[46] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor robot.
Control Engineering Practice, 18(7):691–699, 2010. doi:
10.1016/j.conengprac.2010.02.008.
[47] Z. Benić, P. Piljek, and D. Kotarski. Mathematical modelling of unmanned aerial vehicles with four rotors.
Interdisciplinary Description of Complex Systems, 14(1):88–100, 2016. doi:
10.7906/indecs.14.1.9.
[48] I.M. Salameh, E.M. Ammar, and T.A. Tutunji. Identification of quadcopter hovering using experimental data.
2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pages 1–6, Amman, Jordan, 3–5 November 2015. doi:
10.1109/AEECT.2015.7360559.
[49] [Online]. Available: https://airdata.com [Accessed on: 27 January 2022].
[50] W. Jaafar and H. Yanikomeroglu. Dynamics of quadrotor UAVs for aerial networks: An energy perspective.
Arxiv, 2019. doi:
10.48550/arXiv.1905.06703.
[51] P. Pradeep and P. Wei. Energy efficient arrival with rta constraint for multirotor eVTOL in urban air mobility.
Journal of Aerospace Information Systems, 16(7):1–15, 2019. doi:
10.2514/1.I010710.
[52] F. Morbidi and D. Pisarski. Practical and accurate generation of energy-optimal trajectories for a planar quadrotor.
2021 IEEE International Conference on Robotics and Automation (ICRA), pages 355–361, Xi'an, China, 30 May–5 June 2021. doi:
10.1109/ICRA48506.2021.9561395.
[53] T. Mesbahi, N. Rizoug, P. Bartholomeus, and P. Le Moigne. Li-ion battery emulator for electric vehicle applications.
2013 IEEE Vehicle Power and Propulsion Conference (VPPC), pages 1–8, Beijing, China, 15–18 October 2013. doi:
10.1109/VPPC.2013.6671688.
[54] F. Li, W.-P. Song, B.-F. Song, and H. Zhang, Dynamic modeling, simulation, and parameter study of electric quadrotor system of Quad-Plane UAV in wind disturbance environment.
International Journal of Micro Air Vehicles, 13:1–23, 2021. doi:
10.1177/17568293211022211.
[55] O. Tremblay and L-A. Dessaint. Experimental validation of a battery dynamic model for ev applications.
World Electric Vehicle Journal, 3(2):289–298, 2009. doi:
10.3390/wevj3020289.
[56] S.M. Mousavi and M. Nikdel. Various battery models for various simulation studies and applications.
Renewable and Sustainable Energy Reviews, 32:477–485, 2014. doi:
10.1016/j.rser.2014.01.048.
[57] S.M. Azam.
Battery Identification, Prediction and Modelling. Master Thesis, Colorado State University, Fort Collins, Colorado, USA, 2018.
[58] E. Raszmann, K. Baker, Y. Shi, and D. Christensen. Modeling stationary lithium-ion batteries for optimization and predictive control.
2017 IEEE Power and Energy Conference at Illinois (PECI), pages 1–7, Champaign, IL, USA, 23–24 February 2017. doi:
10.1109/PECI.2017.7935755.
[59] H. Hemi, N.K. M’Sirdi, and A. Naamane. A new proposed shepherd model of a li-ion open circuit battery based on data fitting.
IMAACA 2019, Lisbon, Portugal, 2019.
[60] [Online]: https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html. [Accessed on: 9 October 2021].
[61] H. Hinz. Comparison of lithium-ion battery models for simulating storage systems in distributed power generation.
Inventions, 4(3):41, 2019. doi:
10.3390/inventions4030041.
[62] L.E. Romero, D.F. Pozo, and J.A. Rosales. Quadcopter stabilization by using PID controllers.
Maskana, 5:175–186, 2016.
[63] A. Rodić and G. Mester. The modeling and simulation of an autonomous quad-rotor microcopter in a virtual outdoor scenario. A
cta Polytechnica Hungarica, 8(4):107–122, 2011.
[64] A.L. Salih, M. Moghavvemi, H.A.F. Mohamed, and K.S. Gaeid. Flight PID controller design for a UAV quadrotor.
Scientific Research and Essays, 5(23):3660–3667, 2010.
[65] V. Brito, A. Brito, L.B. Palma, and P. Gil. Quadcopter control approaches and performance analysis. In
Proceedings of the 15th International Conference on Informatics in Control, Automation and–Robotics - Volume 1: ICINCO, pages 86–93, Porto, Portugal, 29–31 July, 2018. doi:
10.5220/0006902600960103.
[66] [Online]. Available: https://www.dji.com/pl/downloads/products/mavic-2. [Accessed on: 7 August 2021].
[67] M. Jacewicz, M. Żugaj, R. Głębocki, and P. Bibik. Quadrotor model for energy consumption analysis.
Energies, 15(19):7136, 2022. doi:
10.3390/en15197136.
[68] M. Jacewicz, P. Lichota, D. Miedziński, and R. Głębocki. Study of model uncertainties influence on the impact point dispersion for a gasodynamicaly controlled projectile.
Sensors, 22(9):3257, 2022. doi:
10.3390/s22093257.
[69] M. Jacewicz, R. Głębocki, and R. Ożóg. Monte-Carlo based lateral thruster parameters optimization for 122 mm rocket. In: R. Szewczyk, C. Zieliński, M. Kaliczyńska (eds)
Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, volume 1140, pages 125–134, Springer, 2020. doi:
10.1007/978-3-030-40971-5_12.
[70] C. Coulombe, J.-F. Gamache, A. Mohebbi, C. Abolfazl, U. Chouinard and S. Achiche, Applying robust design methodology to a quadrotor drone. In
Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol 4: Design Methods and Tools, Vancouver, Canada, 21–25 August 2017.